
The SB-Prolog System, Version 3.0

A User Manual

edited by

Saumya K. Debray

from material by

David Scott Warren

Suzanne Dietrich

SUNY at Stony Brook

Fernando Pereira

SRI International

Department of Computer Science

University of Arizona

Tucson, AZ 85721

September 1988

1

Contents

1 Introdution 5

2 Getting Started 6

2.1 The Dynami Loader Searh Path : : : : : : : : : : : : : : : 6

2.2 System Diretories : 7

2.3 Invoking the Simulator : 7

2.4 Exeuting Programs : 8

2.4.1 Compiling Programs : : : : : : : : : : : : : : : : : : : 8

2.4.2 Loading Byte Code Files : : : : : : : : : : : : : : : : 9

2.4.3 Consulting Programs : : : : : : : : : : : : : : : : : : : 10

2.5 Exeution Diretives : 11

3 Syntax 11

3.1 Terms : 11

3.2 Operators : 14

3.3 Clause? : 17

3.4 Rule? : 17

3.5 Query? : 17

4 SB-Prolog: Operational Semantis 18

4.1 Standard Exeution Behaviour : : : : : : : : : : : : : : : : : 18

4.2 Cuts and If-Then-Else : 18

4.3 Uni�ation of Floating Point Numbers : : : : : : : : : : : : : 19

5 Evaluable Prediates 19

5.1 Input and Output : 20

5.1.1 File Handling : 20

5.1.2 Term I/O : 21

5.1.3 Charater I/O : 22

5.2 Arithmeti : 22

5.3 Conveniene : 25

5.4 Extra Control : 26

5.5 Meta-Logial : 26

5.6 Sets : 29

5.7 Comparison of Terms : 30

5.8 Bu�ers : 31

5.9 Modi�ation of the Program : : : : : : : : : : : : : : : : : : : 32

2

5.10 Internal Database : 35

5.11 Information about the State of the Program : : : : : : : : : : 36

5.12 Environmental : 38

5.13 Global Values : 41

5.14 Exotia : 42

6 Debugging 44

6.1 High-Level Traing : 44

6.2 Low-Level Traing : 47

7 The Simulator 47

7.1 Invoking the Simulator : 47

7.2 Simulator Options : 48

7.3 Interrupts : 49

8 The Compiler 50

8.1 Invoking the Compiler : 50

8.2 Compiler Options : 51

8.3 Assembly : 52

8.4 Compiler Diretives : 52

8.4.1 Mode Delarations : 52

8.4.2 Indexing Diretives : 54

9 Libraries 54

10 Maros 55

10.1 De�ning Maros : 56

10.2 Maro Expander Options : 57

11 Extension Tables: Memo Relations 57

12 De�nite Clause Grammars 60

13 Pro�ling Programs 62

14 Other Library Utilities 65

15 CREDITS 66

A Evaluable Prediates of SB-Prolog 72

3

B A Note on Coding for EÆieny 75

B.1 Avoiding Creation of Baktrak Points : : : : : : : : : : : : : 75

B.2 Minimizing Data Movement Between Registers : : : : : : : : 77

B.3 Proessing All Arguments of a Term : : : : : : : : : : : : : : 77

B.4 Testing Uni�ability : 78

C Adding Builtins to SB-Prolog 79

List of Figures

1 Struture for the Funtion .(1,.(2,.(3,[℄))) : : : : : : : : 13

2 Strutures for the Funtions [X|L℄ and [a,b|L : : : : : : : : 14

3 Extension Table Example : 58

List of Tables

1 Operator Priorities : 16

2 Inline Prediates of SB-Prolog : : : : : : : : : : : : : : : : : : 20

3 Run Time Statistis Prediates : : : : : : : : : : : : : : : : : 39

4 Sysall Numbers for Some Unix Systems Calls : : : : : : : : : 41

5 Complementary Tests Reognized by the Compiler : : : : : : 75

4

Abstract

SB-Prolog is a Prolog system for Unix1-based systems. The core

of the system is an emulator, written in C for portability, of a Prolog

virtual machine that is an extension of the Warren Abstract Machine.

The remainder of the system, including the translator from Prolog to

the virtual machine instructions, is written in Prolog. Parts of this

manual, specifically the sections on Prolog syntax and descriptions

of some of the builtins, are based on the C-Prolog User Manual by

Fernando Pereira.

1 Introdution

SB-Prolog is a Prolog system based on an extension of the Warren Abstrat

Mahine

2
. The WAM simulator is written in C to enhane portability. Prolog

soure programs an be ompiled into byte ode �les, whih ontain enodings

of WAM instrutions and are interpreted by the simulator. Programs an

also be interpreted via onsult.

SB-Prolog o�ers several features that are not found on most Prolog sys-

tems urrently available. These inlude: ompilation to objet �les; dynami

loading of prediates; provision for generating exeutable ode on the global

stak, whih an be later be relaimed; an extension table faility that per-

mits memoization of relations. Other features inlude full integration be-

tween ompiled and interpreted ode, and a faility for the de�nition and

expansion of maros that is fully ompatible with the runtime system.

The system inorporates tail reursion optimization, and performs lause

indexing in both ompiled and interpreted ode. However, there is no garbage

olletor for the global stak. This may be inorporated into a later version.

One of the few luxuries a�orded to a person giving software away for free

is the ability to take philosophial stanes without hurting his wallet. Based

on our faith in the \delarative ideal", viz. that pure programs with delar-

ative readings are Good, we have attempted to enourage, where possible,

a more delarative style of programming. To this end, we have deliberately

hosen to not reward programs ontaining uts in some situations where

more delarative ode is possible (see Appendix B). We have also resisted

the temptation to make assert less expensive. We hope this will help promote

a better programming style.

1Unix is a trademark of AT&T.
2D. H. D. Warren, “An Abstract Prolog Instruction Set”, Tech. Note 309, SRI Inter-

national, 1983.

5

2 Getting Started

This setion is intended to give a broad overview of the SB-Prolog system,

so as to enable the new user to begin using the system with a minimum of

delay. Many of the topis touhed on here are overed in greater depth in

later setions.

2.1 The Dynamic Loader Search Path

In SB-Prolog, it is not neessary for the user to load all the prediates ne-

essary to exeute a program. Instead, if an unde�ned prediate foo is en-

ountered during exeution, the system searhes the user's diretories in the

order spei�ed by the environment variable SIMPATH until it �nds a dire-

tory ontaining a �le foo whose name is that of the unde�ned prediate.

It then dynamially loads and links the �le foo (whih is expeted to be a

byte ode �le de�ning the prediate foo), and ontinues with exeution; if no

suh �le an be found, an error message is given and exeution fails. This

feature makes it unneessary for the user to have to expliitly link in all

the prediates that might be neessary in a program: instead, only those

�les are loaded whih are neessary to have the program exeute. This an

signi�antly redue the memory requirements of programs.

The key to this dynami searh-and-load behaviour is the SIMPATH

environment variable, whih spei�es the order in whih diretories are to be

searhed. It may be set by adding the following line to the user's .shr �le:

setenv SIMPATH path

where path is a sequene of diretory names separated by olons:

dir1:dir2: : : : : dirn

and diri are full path names to the respetive diretories. For example,

exeuting the ommand

setenv SIMPATH .:$HOME/prolog/modlib:$HOME/prolog/lib

sets the searh order for unde�ned prediates to the following: �rst, the

diretory in whih the program is exeuting is searhed; if the appropriate

�le is not found in this diretory, the diretories searhed are, in order,

~

/prolog/modlib and ~/prolog/lib. If the appropriate �le is not found in

any of these diretories, the system gives an error message and exeution

fails.

6

The beginning user is advised to inlude the system diretories (listed in

the next setion) in his SIMPATH, in order to be able to aess the system

libraries (see below).

2.2 System Directories

There are four basi system diretories: mplib, lib, modlib and sim.

mplib ontains the Prolog to byte ode translator; lib and modlib on-

tain library routines. The sr subdiretory in eah of these ontains the

orresponding Prolog soure programs. The diretory sim ontains the sim-

ulator, the subdiretory builtin ontains ode for the builtin prediates of

the system.

It is reommended that the beginning user inlude the system diretories

in his SIMPATH, by setting SIMPATH to

.:SBP/modlib:SBP/lib:SBP/mplib

where SBP denotes the path to the root of the SB-Prolog system diretories.

2.3 Invoking the Simulator

The simulator is invoked by the ommand

sbprolog b file where b �le

is a byte ode �le resulting from the ompilation of a Prolog program. In

almost all ases, the user will wish to interat with the SB-Prolog query

evaluator, in whih ase b �le will be $readloop, and the ommand will be

sbprolog Path/$readloop

where Path is the path to the diretory ontaining the ommand interpreter

$readloop. This diretory, typially, is modlib (see Setion 2.2 above).

The ommand interpreter reads in a query typed in by the user, evaluates

it and prints the answer(s), repeating this until it enounters an end-of-�le

(the standard end-of-�le harater on the system, e.g. trl-D), or the user

types in end of �le or halt.

The user should ensure that the the diretory ontaining the exeutable

�le sim (typially, the system diretory sim: see Setion 2.2 above). is

inluded in the shell variable path; if not, the full path to the simulator will

have to be spei�ed.

In general, the simulator may be invoked with a variety of options, as

follows:

7

sbprolog -options b file

or

sbprolog -option1 -option2 : : : -optionn b file

The options reognized by the simulator are desribed in Setion 4.2.

When alled with a byte ode �le b �le, the simulator begins exeution

with the �rst lause in that �le. The �rst lause in suh a �le, therefore,

should be a lause without any arguments in the head (otherwise, the sim-

ulator will attempt to dereferene argument pointers in the head that are

really pointing into deep spae, and usually ome to a sad end). If the user is

exeuting a �le in this manner rather than using the ommand interpreter, he

should also be areful to inlude the unde�ned prediate handler, onsisting

of the prediates ` $interrupt/2 and ` $unde�ned pred'/1, whih is normally

de�ned in the �les modlib/sr/$init sys.P and modlib/sr/$readloop.

2.4 Executing Programs

There are two ways of exeuting a program: a soure �le may be ompiled

into a byte-ode �le, whih an then be loaded and exeuted; or, the soure

�le may be interpreted via onsult. The system supports full integration of

ompiled and interpreted ode, so that some prediates of a program may be

ompiled, while others may be interpreted. However, the unit of ompilation

or onsulting remains the �le. The remainder of this setion desribes eah

of these proedures in more detail.

2.4.1 Compiling Programs

The ompiler is invoked through the Prolog prediate ompile. It translates

Prolog soure programs into byte ode that an then be exeuted on the

simulator. The ompiler may be invoked as follows:

| ?- ompile(InFile [, OutFile ℄ [, OptionsList ℄).

or

| ?- ompile(InFile, OutFile, OptionsList, PredList).

where optional parameters are enlosed in brakets. InFile is the name

of the input (i.e. soure) �le; OutFile is the name of the output �le (i.e. byte

ode) �le; OptionsList is a list of ompiler options, and PredList is a list of

8

terms P=N denoting the prediates de�ned in InFile, where P is a prediate

name and N its arity.

The input and output �le names must be Prolog atoms, i.e. either begin

with a lower ase letter and onsist only of letters, digits, dollar signs and

undersores; or, be enlosed within single quotes. If the output �le name is

not spei�ed, it defaults to InFile.out. The list of options, if spei�ed, is a

Prolog list, i.e. a term of the form

[option1, option2, : : :, optionn ℄.

If left unspei�ed, it defaults to the empty list [℄. PredList, if spei�ed,

is usually given as an uninstantiated variable; its prinipal use is for setting

trae points on the prediates in the �le (see Setions 6 and 8). Notie that

PredList an only appear in ompile/4.

A list of ompiler options appears in Setion 8.2.

2.4.2 Loading Byte Code Files

Byte ode �les may be loaded into the simulator using the prediate load:

| ?- load(ByteCode File).

where ByteCode File is a Prolog atom (see Setion 3.1) that is the name

of a byte ode �le.

The load prediate invokes the dynami loader, whih arries out a searh

aording to the sequene spei�ed by the environment variable SIMPATH (see

Setion 2.1). It is therefore not neessary to always speify the full path name

to the �le to be loaded.

Byte ode �les may be onatenated together to produe other byte ode

�les. Thus, for example, if foo1 and foo2 are byte ode �les resulting from

the ompilation of two Prolog soure programs, then the �le foo, obtained

by exeuting the shell ommand

at foo1 foo2 > foo

is a byte ode �le as well, and may be loaded and exeuted. In this ase,

loading and exeuting the �le foo would give the same result as loading

foo1 and foo2 separately, whih in turn would be the same as onatenating

the original soure �les and ompiling this larger �le. This makes it easier

to ompile large programs: one need only break them into smaller piees,

ompile the individual piees, and onatenate the resulting byte ode �les

together.

9

2.4.3 Consulting Programs

Instead of ompiling a �le to generate a byte ode �le whih then has to

be loaded, a program may be exeuted interpretively by \onsulting" the

orresponding soure �le:

| ?- onsult(SoureFile [, OptionList ℄).

or

| ?- onsult(SoureFile, OptionList, PredList).

where SoureFile is a Prolog atom whih is the name of a �le ontaining a

Prolog soure program; OptionList is a list of options to onsult; and PredList

is a list of terms P/N , where P is a prediate name and N its arity, speifying

whih prediates have been onsulted from SoureFile; its prinipal use is for

setting trae points on the prediates in the �le (see Setion 6). Notie that

PredList an only appear in onsult/3.

At this point, the options reognized for onsult are the following:

t \trae". Causes a trae point to be set on any prediate in the urrent �le

that does not already have a trae point set.

v \verbose". Causes information regarding whih prediates have been on-

sulted to be printed out. Default: o�.

In addition to the above, options for the maro expander are also reog-

nized (see Setion 10)).

onsult will reate an index on the prinipal funtor of the �rst argument

of the prediates being onsulted, unless this is hanged using the index/3

diretive. In partiular, note that if no index is desired on a prediate foo/n,

then the diretive

:- index(foo, n, 0).

should be given.

It is important to note that SB-Prolog's onsult prediate is similar to

that of Quintus Prolog, and behaves like C-Prolog's reonsult. This means

that if a prediate is de�ned aross two or more �les, onsulting them will

result in only the lauses in the �le onsulted last being used.

10

2.5 Execution Directives

Exeution diretives may be spei�ed to ompile and onsult through :{/1.

If, in the read phase of ompile or onsult, a term with prinipal funtor

:{/1 is read in, this term is exeuted diretly via all/1. This enables the

user to dynamially modify the environment, e.g. via op delarations (see

Setion 3.2), asserts et.

A point to note is that if the environment is modi�ed as a result of an

exeution diretive, the modi�ations are visible only in that environment.

This means that onsulted ode, whih runs in the environment in whih the

soure program is read (and whih is modi�ed by suh exeution diretives)

feel the e�ets of suh exeution diretives. However, byte ode resulting

from ompilation, whih, in general, exeutes in an environment di�erent

from that in whih the soure was ompiled, does not inherit the e�ets of

suh diretives. Thus, an op delaration an be used in a soure �le to hange

the syntax and allow the remainder of the program to be parsed aording

to the modi�ed syntax; however, these modi�ations will not, in general,

manifest themselves if the byte ode is exeuted in another environment. Of

ourse, if the byte ode is loaded into the same environment as that in whih

the soure program was ompiled, e.g. through

| ?- ompile(foo, bar), load(bar).

the e�ets of exeution diretives will ontinue to be felt.

3 Syntax

3.1 Terms

The syntax of SB-Prolog is by and large ompatible with that of C-Prolog.

The data objets of the language are alled terms. A term is either a onstant,

a variable or a ompound term. Constants an be integers or atoms. The

symbol for an atom must begin with a lower ase letter or the dollar sign

$, and onsist of any number of letters, digits, undersores and dollar signs;

if it ontains any harater other than these, it must be enlosed within

single quotes.

3
As in other programming languages, onstants are de�nite

elementary objets.

3Users are advised against using symbols beginning with ‘$’ or ‘ $’, however, in order

to minimize the possibility of conflicts with symbols internal to the system.

11

Variables are distinguished by an initial apital letter or by the initial

harater \ " for example

X Value A A1 3 RESULT result

If a variable is only referred to one, it does not need to be named and may

be written as an anonymous variable, indiated by the underline harater

.

A variable should be thought of as standing for some de�nite but uniden-

ti�ed objet. A variable is not simply a writable storage loation as in most

programming languages; rather it is a loal name for some data objet, f.

the variable of pure LISP and onstant delarations in Pasal.

The strutured data objets of the language are the ompound terms.

A ompound term omprises a funtor (alled the prinipal funtor of the

term) and a sequene of one or more terms alled arguments. A funtor

is haraterized by its name, whih is an atom, and its arity or number of

arguments. For example the ompound term whose funtor is named `point'

of arity 3, with arguments X, Y and Z, is written

point(X,Y,Z)

An atom is onsidered to be a funtor of arity 0.

A funtor or prediate symbol is uniquely identi�ed by its name and arity

(in other words, it is possible for di�erent symbols having di�erent arities

to share the same name). A funtor or prediate symbol p with arity n is

usually written p/n.

One may think of a funtor as a reord type and the arguments of a

ompound term as the �elds of a reord. Compound terms are usefully

pitured as trees. For example, the term

s(np(john),vp(v(likes),np(mary)))

would be pitured as the struture

s

/ \

np vp

| / \

john v np

| |

likes mary

12

Sometimes it is onvenient to write ertain funtors as operators | 2-ary

funtors may be delared as in�x operators and 1-ary funtors as pre�x or

post�x operators. Thus it is possible to write

X+Y (P;Q) X<Y +X P;

as optional alternatives to

+(X,Y) ;(P,Q) <(X,Y) +(X) ;(P)

Operators are desribed fully in the next setion.

Lists form an important lass of data strutures in Prolog. They are

essentially the same as the lists of LISP: a list either is the atom [℄, repre-

senting the empty list, or is a ompound term with funtor `.'/2 and two

arguments whih are respetively the head and tail of the list. Thus a list

of the �rst three natural numbers is the struture (shown in Figure 1) whih

ould be written, using the standard syntax, as .(1,.(2,.(3,[℄))), but

.

/ \

1 .

/ \

2 .

/ \

3 [℄

Figure 1: Struture for the Funtion .(1,.(2,.(3,[℄)))

whih is normally written, in a speial list notation, as [1,2,3℄. The speial

list notation in the ase when the tail of a list is a variable is exempli�ed by

[X|L℄ [a,b|L℄

representing the strutures shown in Figure 2 respetively.

Note that this list syntax is only syntati sugar for terms of the form `.'(,

) and does not provide any new failities that were not available otherwise.

For onveniene, a further notational variant is allowed for lists of integers

whih orrespond to ASCII harater odes. Lists written in this notation

are alled strings. For example, "Prolog" represents exatly the same list

as [80,114,111,108,111,103℄.

13

. .

/ \ / \

X L a .

/ \

b L

Figure 2: Strutures for the Funtions [X|L℄ and [a,b|L

3.2 Operators

Operators in Prolog are simply a notational onveniene. For example, the

expression

2 + 1

ould also be written +(2,1). It should be notied that this expression

represents the struture

+

/ \

2 1

and not the number 3. The addition would only be performed if the struture

was passed as an argument to an appropriate proedure (suh as eval/2 |

see Setion 5.2).

The Prolog syntax aters for operators of three main kinds | in�x, pre�x

and post�x. An in�x operator appears between its two arguments, while a

pre�x operator preedes its single argument and a post�x operator is written

after its single argument.

Eah operator has a preedene, whih is a number from 1 to 1200. The

preedene is used to disambiguate expressions where the struture of the

term denoted is not made expliit through parenthesization. The general

rule is that the operator with the highest preedene is the prinipal funtor.

Thus if `+' has a higher preedene than `/', then a+b/ and a+(b/) are

equivalent and denote the term +(a,/(b,)). Note that the in�x form of

the term /(+(a,b),) must be written with expliit parentheses, (a+b)/.

If there are two operators in the subexpression having the same highest

preedene, the ambiguity must be resolved from the types of the operators.

The possible types for an in�x operator are

xfx xfy yfx

14

With an operator of type `xfx', it is a requirement that both of the two

subexpressions whih are the arguments of the operator must be of lower

preedene than the operator itself, i.e. their prinipal funtors must be of

lower preedene, unless the subexpression is expliitly braketed (whih

gives it zero preedene). With an operator of type `xfy', only the �rst or

left-hand subexpression must be of lower preedene; the seond an be of

the same preedene as the main operator; and vie versa for an operator of

type `yfx'.

For example, if the operators `+' and `{' both have type `yfx' and are

of the same preedene, then the expression \a{b+" is valid, and means

\(a{b)+", i.e. \+({(a,b),)". Note that the expression would be invalid if

the operators had type `xfx', and would mean \a{(b+)", i.e. \{(a,+(b,))",

if the types were both `xfy'.

The possible types for a pre�x operator are

fx fy

and for a post�x operator they are

xf yf

The meaning of the types should be lear by analogy with those for in�x

operators. As an example, if `not' were delared as a pre�x operator of type

`fy', then

not not P

would be a permissible way to write not(not(P)). If the type were `fx', the

preeding expression would not be legal, although

not P

would still be a permissible form for not(P).

In SB-Prolog, a funtor named name is delared as an operator of type

type and preedene preedene by alling the evaluable prediate op:

| ?- op(preedene, type, name).

The argument name an also be a list of names of operators of the same type

and preedene.

It is possible to have more than one operator of the same name, so long

as they are of di�erent kinds, i.e. in�x, pre�x or post�x. An operator of any

kind may be rede�ned by a new delaration of the same kind. This applies

15

:{ op(1200, xfx, [:{, {> ℄).

:{ op(1200, fx, [:{ ℄).

:{ op(1198, xfx, [::{ ℄).

:{ op(1150, fy, [mode, publi, dynami ℄).

:{ op(1100, xfy, [; ℄).

:{ op(1050, xfy, [{> ℄).

:{ op(1000, xfy, [',' ℄). /* See note below */

:{ op(900, fy, [not, n+, spy, nospy ℄).

:{ op(700, xfx, [=, is, =.., ==, n ==, �<, �>, �=<, �>=,

=:=, = n =, <, >, =<, >=, ?=, n = ℄).

:{ op(661, xfy, [`.' ℄).

:{ op(500, yfx, [+, {, /n, n/ ℄).

:{ op(500, fx, [+, { ℄).

:{ op(400, yfx, [*, /, //, <<, >> ℄).

:{ op(300, xfx, [mod ℄).

:{ op(200, xfy, [^ ℄).

Table 1: Operator Priorities

equally to operators whih are provided as standard in SB-Prolog, namely

the ones shown in Table 1.

Operator delarations are most usefully plaed in diretives at the top

of your program �les. In this ase the diretive should be a ommand as

shown above. Another ommon method of organization is to have one �le

just ontaining ommands to delare all the neessary operators. This �le is

then always onsulted �rst.

Note that a omma written literally as a puntuation harater an be

used as though it were an in�x operator of preedene 1000 and type `xfy':

X,Y ','(X,Y)

represent the same ompound term. But note that a omma written as a

quoted atom is not a standard operator.

Note also that the arguments of a ompound term written in standard

syntax must be expressions of preedene below 1000. Thus it is neessary

to parenthesize the expression P :{ Q in

assert((P :- Q))

The following syntax restritions serve to remove potential ambiguity asso-

iated with pre�x operators.

16

� In a term written in standard syntax, the prinipal funtor and its

following (must not be separated by any whitespae. Thus

point (X,Y,Z)

is invalid syntax (unless point were delared as a pre�x operator).

� If the argument of a pre�x operator starts with a (, this (must be

separated from the operator by at least one spae or other non-printable

harater. Thus

:-(p;q),r.

(where :-- is the pre�x operator) is invalid syntax, and must be written

as

:- (p;q),r.

� If a pre�x operator is written without an argument, as an ordinary

atom, the atom is treated as an expression of the same preedene as

the pre�x operator, and must therefore be braketed where neessary.

Thus the brakets are neessary in

X = (?-)

3.3 Clause?

The syntax of a lause is as follows. What the hell IS the syntax for a lause?

3.4 Rule?

The syntax of a rule is as follows. What the hell IS the syntax for a rule?

3.5 Query?

The syntax of a query is as follows. What the hell IS the syntax for a query?

17

4 SB-Prolog: Operational Semantis

4.1 Standard Execution Behaviour

The normal exeution behaviour of SB-Prolog follows the usual left to right

order of literals within a lause, and the textual top to bottom order of lauses

for a prediate. This orresponds to a depth �rst searh of the leftmost

SLD-tree for the program and the given query. Uni�ation without ours

hek is used, and exeution baktraks to the most reent hoie point when

uni�ation fails.

4.2 Cuts and If-Then-Else

This standard exeution behaviour of SB-Prolog an be hanged using on-

struts like ut (!) and if-then-else (->). In SB-Prolog, uts are usually

treated as hard, i.e. disard hoie points of all the literals to the left of the

ut in the lause ontaining the ut being exeuted, and also the hoie point

for the parent prediate, i.e. any remaining lauses for the prediate ontain-

ing the ut being exeuted. There are some situations, however, where the

sope of a ut is restrited to be smaller than this. Restritions apply under

the following onditions:

1. The ut ours in a term whih has been onstruted at runtime and

alled through all/1, e.g. in

: : :, X = (p(Y), !, q(Y)), : : :, all(X), : : :

In this ase, the sope of the ut is restrited to be within the all,

unless one of the following ases also apply and serve to restrit its

sope further.

2. The ut ours in a negated goal, or within the sope of the test

of an if-then-else (in an if-then-else of the form Test -> TruePart;

FalsePart, the test is the goal Test). In these ases, the sope of the

ut is restrited to be within the negation or the test of the if-then-else,

respetively.

In ases involving nested ourrenes of these situations, the sope of

the ut is restrited to that for the deepest suh nested onstrut, i.e. most

restrited. For example, in the onstrut

18

: : :, not((p(X) -> not((q(X), (r(X) -> s(X) ; (t(X), !,

u(X))))))), : : :

the sope of the ut is restrited to the inner negation, and does not a�et

any hoie point that may have been set up for p(X).

4.3 Unification of Floating Point Numbers

As far as uni�ation is onerned, no type distintion is made between inte-

gers and oating point numbers, and no expliit type onversion is neessary

when unifying an integer with a oat. However, due to the �nite preision

representation of oating point numbers and umulative round-o� errors in

oating point arithmeti, omparisons involving oating point numbers may

not always give the expeted results. An e�ort is made to minimize surprises

by onsidering two numbers x and y (at least one of whih is a oat) to be

uni�able if (kxk � kyk)=min(kxk; kyk) to be less than 10

−5
. However, this

does not guarantee immunity against round-o� errors. For the same reason,

users are warned that indexing on prediate arguments (see Setion 8.4.2)

may not give the expeted results if oating point numbers are involved.

5 Evaluable Prediates

This setion desribes (most of) the evaluable prediates provided by SB-

Prolog. These an be divided into three lasses: inline prediates, builtin

prediates and library prediates.

Inline prediates represent \primitive" operations in the WAM. Calls to

inline prediates are ompiled into a sequene of WAM instrutions in-line,

i.e. without atually making a all to the prediate. Thus, for example, re-

lational prediates (> =2, >= =2, et.) ompile to, essentially, a subtration

and a onditional branh. Inline prediates annot be rede�ned by the user.

Table 2 lists the SB-Prolog inline prediates.

Unlike inline prediates, builtin prediates are implemented by C fun-

tions in the simulator, and aessed via the inline prediate ` $builtin'/1.

Thus, if a builtin prediate foo/3 was de�ned as builtin number 38, there

would be a de�nition in the system of the form

foo(X,Y,Z) :- ' $builtin'(38).

In e�et, a builtin is simply a segment of ode in a large ase (i.e. swith)

statement. Eah builtin is identi�ed internally by an integer, referred to as

19

arg/3 =/2 < =2 =< =2

>= =2 > =2 /n =2 `n =

′
=2

<</2 >>/2 =:=/2 = n = =2

is/2 ?=/2 n = n =1

` $builtin'/1 ` $all'/1 nonvar/1 var/1

integer/1 real/1 halt/0 true/0

fail/0

Table 2: Inline Prediates of SB-Prolog

its \builtin number", assoiated with it. The ode for a builtin with buitin

number k orresponds to the k

th
ase in the swith statement. SB-Prolog

limits the total number of builtins to 256.

Builtins, unlike inline prediates, an be rede�ned by the user. For ex-

ample, the prediate foo/3 above an be rede�ned simply by ompiling the

new de�nition into a diretory suh that during dynami loading, the new

de�nition would be enountered �rst and loaded.

A list of the builtins urrently provided is listed in Appendix A. Ap-

pendix C desribes the proedure to be followed in order to de�ne new builtin

prediates.

Like builtin prediates, library prediates may also be rede�ned by the

user. The essential di�erene between builtin and library prediates is that

whereas the former are oded into the simulator in C, the latter are written

in Prolog.

5.1 Input and Output

Input and output are done with respet to the urrent input and output

streams. These an be set, reset or heked using the �le handling prediates

desribed below. The default input and output streams are denoted by user,

and refer to the user's terminal.

5.1.1 File Handling

see(F) F beomes the urrent input stream. F must be instantiated to an

atom at the time of the all.

seeing(F) F is uni�ed with the name of the urrent input �le.

seen Closes the urrent input stream.

20

tell(F) F beomes the urrent output stream. F must be instantiated to

an atom at the time of the all.

telling(F) F is uni�ed with the name of the urrent output �le.

told Closes the urrent output stream.

$exists(F) Sueeds if �le F exists.

5.1.2 Term I/O

read(X) The next term, delimited by a full stop (i.e. a . followed by a

arriage-return or a spae), is read from the urrent input stream and

uni�ed with X. The syntax of the term must aord with urrent

operator delarations. If a all read(X) auses the end of the urrent

input stream to be reahed, X is uni�ed with the atom `end of �le'.

Further alls to read for the same stream will then ause an error

failure.

write(X) The term X is written to the urrent output stream aording to

operator delarations in fore.

display(X) The term X is displayed on the terminal.

writeq(Term) Similar to write(Term), but the names of atoms and fun-

tors are quoted where neessary to make the result aeptable as input

to read.

print(Term) Prints out the term Term onto the urrent output stream.

This prediate provides a handle for user-de�ned pretty-printing. If

Term is a variable then it is written using write/1; otherwise, if a

user-de�ned prediate portray/1 is de�ned, then a all is made to

portray(Term); otherwise, print/1 is equivalent to write/1.

writename(Term) If Term is an uninstantiated variable, its name, whih

looks a lot like an address in memory, is written out; otherwise, the

prinipal funtor of Term is written out.

writeqname(Term) As for writename, but the names are quoted where

neessary.

21

print al(N , A) Prints A (whih must be an atom or a number) left-aligned

in a �eld of width N , with blanks padded to the right. If A's print

name is longer than the �eld width N , then A is printed but with no

right padding.

print ar(N , A) Prints A (whih must be an atom or a number) right-

aligned in a �eld of width N , with blanks padded to the left. If A's

print name is longer than the �eld width N , then A is printed but with

no left padding.

portray term(Term) Writes out the term Term on the urrent output

stream. Variables are treated speially: an uninstantiated variable is

printed out as Vn, where n is a number.

portray lause(Term) Writes out the term Term, interpreted as a lause,

on the urrent output stream. Variables are treated as in portray term/1.

5.1.3 Charater I/O

nl A new line is started on the urrent output stream.

get0(N) N is the ASCII ode of the next harater from the urrent input

stream. If the urrent input stream reahes its end of �le, a �1 is

returned (however, unlike in C-Prolog, the input stream is not losed

on enountering end-of-�le).

get(N) N is the ASCII ode of the next non-blank printable harater from

the urrent input stream. It has the same behaviour as get0 on end

of �le.

put(N) ASCII harater ode N is output to the urrent output stream. N

must be an integer.

tab(N) N spaes are output to the urrent output stream. N must be an

integer.

5.2 Arithmetic

Arithmeti is performed by evaluable prediates whih take as arguments

arithmeti expressions and evaluate them. An arithmeti expression is a

term built from evaluable funtors, numbers and variables. At the time of

evaluation, eah variable in an arithmeti expression must be bound to a

22

number or to an arithmeti expression. Eah evaluable funtor stands for an

arithmeti operation.

The evaluable funtors are as follows, where X and Y are arithmeti

expressions.

X + Y addition.

X � Y subtration.

X � Y multipliation.

X=Y division.

X==Y integer division.

X (mod Y) X (integer) modulo Y .

�X unary minus.

X /n Y integer bitwise onjuntion.

X n/ Y integer bitwise disjuntion.

X � Y integer bitwise left shift of X by Y plaes.

X � Y integer bitwise right shift of X by Y plaes.

nX integer bitwise negation.

As far as uni�ation is onerned, no type distintion is made between

integers and oating point numbers, and no expliit type onversion is ne-

essary when unifying an integer with a oat. However, due to the �nite

preision representation of oating point numbers and umulative round-

o� errors in oating point arithmeti, omparisons involving oating point

numbers may not always give the expeted results. An e�ort is made to min-

imize surprises by onsidering two numbers x and y (at least one of whih is a

oat) to be uni�able if (kxk�kyk)=min(kxk; kyk) to be less than 10

−5
. The

user should note, however, that this does not guarantee immunity against

round-o� errors.

The arithmeti evaluable prediates are as follows, where X and Y stand

for arithmeti expressions, and Z for some term. Note that this means that

is only evaluates one of its arguments as an arithmeti expression (the right-

hand side one), whereas all the omparison prediates evaluate both their

arguments.

23

Z is X Arithmeti expressionX is evaluated and the result, is uni�ed with Z.

Fails if X is not an arithmeti expression. Unlike many other Prolog

systems, variables in the expression X may be bound to other arith-

meti expressions as well as to numbers.

eval(E, X) Evaluates the arithmeti expression E and uni�es the result

with the term X. Fails if E is not an arithmeti expression. (Thus,

eval/2 is, exept for the swithed argument order, the same as is/2.

It's around mainly for historial reasons.)

X=:=Y The values of X and Y are equal. If either X or Y involve om-

pound subexpressions that are reated at runtime, they should �rst be

evaluated using eval/2.

X= n =Y The values of X and Y are not equal. If either X or Y involve

ompound subexpressions that are reated at runtime, they should �rst

be evaluated using eval/2.

X<Y The value of X is less than the value of Y . If either X or Y involve

ompound subexpressions that are reated at runtime, they should �rst

be evaluated using eval/2.

X>Y The value of X is greater than the value of Y . If either X or Y involve

ompound subexpressions that are reated at runtime, they should �rst

be evaluated using eval/2.

X=<Y The value of X is less than or equal to the value of Y . If either X

or Y involve ompound subexpressions that are reated at runtime,

they should �rst be evaluated using eval/2.

X>=Y The value of X is greater than or equal to the value of Y . If either X

or Y involve ompound subexpressions that are reated at runtime,

they should �rst be evaluated using eval/2.

oor(X, Y) If X is a oating point number in the all and Y is free, then Y

is instantiated to the largest integer whose absolute value is not greater

than the absolute value of X; if X is uninstantiated in the all and Y is

an integer, then X is instantiated to the smallest oat not less than Y .

oat(F , M , E) If F is a number while M and E are uninstantiated in the

all, then M is instantiated to a oat m (of magnitude less than 1),

24

and E to an integer n, suh that

F = m� 2

n

If F is uninstantiated in the all while M is a oat and E an integer,

then F beomes instantiated to M � 2

E
.

exp(X, Y) If X is instantiated to a number and Y is uninstantiated in

the all, then Y is instantiated to e

X
(where e = 2.71828...); if X is

uninstantiated in the all while Y is instantiated to a positive number,

then X is instantiated to log

e
(Y).

square(X, Y) If X is instantiated to a number while Y is uninstantiated in

the all, then Y beomes instantiated to X

2
; if X is uninstantiated in

the all while Y is instantiated to a positive number, then X beomes

instantiated to the positive square root of Y (if Y is negative in the

all, X beomes instantiated to 0.0).

sin(X, Y) If X is instantiated to a number (representing an angle in radi-

ans) and Y is uninstantiated in the all, then Y beomes instantiated to

sin(X) (the user should hek the magnitude of X to make sure that

the result is meaningful). If Y is instantiated to a number between

��=2 and �=2 and X is uninstantiated in the all, then X beomes

instantiated to sin

−1
(Y).

5.3 Convenience

P ;Q P and then Q.

P ;Q P or Q.

true Always sueeds.

X=Y De�ned as if by the lause \Z=Z", i.e. X and Y are uni�ed.

Xn =Y Sueeds if X and Y are not uni�able, fails if X and Y are uni�able.

It is thus equivalent to not(X = Y), but is signi�antly more eÆient.

X? =Y Sueeds if X and Y are uni�able and fails if they are not, but does

not instantiate any variables. Thus, it tests whether X and Y are

uni�able. Equivalent to not(not(X = Y)), but is signi�antly more

eÆient.

25

5.4 Extra Control

! Cut (disard) all hoie points made sine the parent goal started exeu-

tion. (The sope of ut in di�erent ontexts is disussed in Setion 4.2).

not P If the goal P has a solution, fail, otherwise sueed. It is de�ned as

if by

not(P) :- P, !, fail.

not(_).

P� > Q; Analogous to if P then Q else R, i.e. de�ned as if by

P -> Q ; R :- P, !, Q.

P -> Q ; R :- R.

P� >Q When ourring other than as one of the alternatives of a disjun-

tion, is equivalent to

P -> Q ; fail.

repeat Generates an in�nite sequene of baktraking hoies. It is de�ned

by the lauses:

repeat.

repeat :- repeat.

fail Always fails.

5.5 Meta-Logical

var(X) Tests whether X is urrently instantiated to a variable.

nonvar(X) Tests whether X is urrently instantiated to a non-variable

term.

atom(X) Cheks that X is urrently instantiated to an atom (i.e. a non-

variable term of arity 0, other than a number).

integer(X) Cheks that X is urrently instantiated to an integer.

real(X) Cheks that X is urrently instantiated to a oating point number.

26

oat(X) Same as real/1, heks that X is urrently instantiated to a oat-

ing point number.

number(X) Cheks that X is urrently instantiated to a number, i.e. that

it is either an integer or a real.

atomi(X) Cheks that X is urrently instantiated to an atom or number.

struture(X) Cheks that X is urrently instantiated to a ompound term,

i.e. to a nonvariable term that is not atomi.

is bu�er(X) Sueeds if X is instantiated to a bu�er.

funtor(T , F , N) The prinipal funtor of term T has name F and arity N ,

where F is either an atom or, provided N is 0, a number. Initially,

either T must be instantiated to a non-variable, or F and N must

be instantiated to, respetively, either an atom and a non-negative

integer or an integer and 0. If these onditions are not satis�ed, an

error message is given. In the ase where T is initially instantiated to

a variable, the result of the all is to instantiate T to the most general

term having the prinipal funtor indiated.

arg(I, T , X) Initially, I must be instantiated to a positive integer and T

to a ompound term. The result of the all is to unify X with the Ith

argument of term T . The arguments are numbered from 1 upwards.)

If the initial onditions are not satis�ed or I is out of range, the all

merely fails.

X= ::Y Y is a list whose head is the atom orresponding to the prinipal

funtor of X and whose tail is the argument list of that funtor in X.

E.g.

produt(0,N,N-1) =.. [produt,0,N,N-1℄

N-1 =.. [-,N,1℄

produt =.. [produt℄

If X is instantiated to a variable, then Y must be instantiated either

to a list of determinate length whose head is an atom, or to a list of

length 1 whose head is a number.

27

name(X;L) If X is an atom or a number then L is a list of the ASCII odes

of the haraters omprising the name of X. E.g.

name(produt,[112,114,111,100,117,99,116℄)

i.e. name(produt,"produt").

If X is instantiated to a variable, L must be instantiated to a list of

ASCII harater odes. E.g.

| ?- name(X,[104,101,108,108,111℄)).

X = hello

| ?- name(X,"hello").

X = hello

all(X) If X is a nonvariable term in the program text, then it is exeuted

exatly as if X appeared in the program text instead of all(X), e.g.

: : :, p(a), all((q(X), r(Y))), s(X), : : :

is equivalent to

: : :, p(a), q(X), r(Y), s(X), : : :

However, if X is a variable in the program text, then if at runtime X

is instantiated to a term whih would be aeptable as the body of a

lause, the goal all(X) is exeuted as if that term appeared textually

in plae of the all(X), exept that any ut (`!') ourring in X will

remove only those hoie points in X. If X is not instantiated as

desribed above, an error message is printed and all fails.

X (where X is a variable) Exatly the same as all(X). However, we prefer

the expliit usage of all/1 as good programming pratie, and the use

of a top level variable subgoal eliits a warning from the ompiler.

onlength(C, L) Sueeds if the length of the print name of the onstant C

(whih an be an atom, bu�er or integer), in bytes, is L. If C is a bu�er

(see Setion 5.8), it is the length of the bu�er; if C is an integer, it is the

length of the deimal representation of that integer, i.e., the number

of bytes that a $writename will use.

28

5.6 Sets

When there are many solutions to a problem, and when all those solutions

are required to be olleted together, this an be ahieved by repeatedly

baktraking and gradually building up a list of the solutions. The following

evaluable prediates are provided to automate this proess.

setof(X, P , S) Read this as S is the set of all instanes of X suh that

P is provable". If P is not provable, setof(X,P ,S) sueeds with S

instantiated to the empty list [℄. The term P spei�es a goal or goals

as in all(P). S is a set of terms represented as a list of those terms,

without dupliates, in the standard order for terms (see Setion 5.7).

If there are uninstantiated variables in P whih do not also appear in

X, then a all to this evaluable prediate may baktrak, generating

alternative values for S orresponding to di�erent instantiations of the

free variables of P . Variables ourring in P will not be treated as free

if they are expliitly bound within P by an existential quanti�er. An

existential quanti�ation is written:

Y ^Q

meaning there exists a Y suh that Q is true, where Y is some Prolog

term (usually, a variable, or tuple or list of variables).

bagof(X, P , Bag) This is the same as setof exept that the list (or alter-

native lists) returned will not be ordered, and may ontain dupliates.

If P is unsatis�able, bagof sueeds binding Bag to the empty list.

The e�et of this relaxation is to save onsiderable time and spae in

exeution.

�ndall(X, P , L) Similar to bagof/3, exept that variables in P that do not

our inX are treated as loal, and alternative lists are not returned for

di�erent bindings of suh variables. The list L is, in general, unordered,

and may ontain dupliates. If P is unsatis�able, �ndall sueeds bind-

ing S to the empty list.

X ^ P The system reognises this as meaning there exists an X suh that

P is true, and treats it as equivalent to all(P). The use of this

expliit existential quanti�er outside the setof and bagof onstruts

is superuous.

29

5.7 Comparison of Terms

These evaluable prediates are meta-logial. They treat uninstantiated vari-

ables as objets with values whih may be ompared, and they never instan-

tiate those variables. They should not be used when what you really want

is arithmeti omparison (Setion 5.2) or uni�ation. The prediates make

referene to a standard total ordering of terms, whih is as follows:

� variables, in a standard order (roughly, oldest �rst | the order is not

related to the names of variables);

� numbers, from �1 to +1;

� atoms, in alphabetial (i.e. ASCII) order;

� omplex terms, ordered �rst by arity, then by the name of prinipal

funtor, then by the arguments (in left-to-right order).

For example, here is a list of terms in the standard order:

[X, -9, 1, fie, foe, fum, X = Y, fie(0,2), fie(1,1) ℄

The basi prediates for omparison of arbitrary terms are:

X == Y Tests if the terms urrently instantiating X and Y are literally

idential (in partiular, variables in equivalent positions in the two

terms must be idential). For example, the question

| ?- X == Y.

fails (answers no) beause X and Y are distint uninstantiated vari-

ables. However, the question

| ?- X = Y, X == Y.

sueeds beause the �rst goal uni�es the two variables (see page ?).

Xn ==Y Tests if the terms urrently instantiating X and Y are not literally

idential.

T1 �< T2 Term T1 is before term T2 in the standard order.

T1 �> T2 Term T1 is after term T2 in the standard order.

30

T1 �=< T2 Term T1 is not after term T2 in the standard order.

T1 �>= T2 Term T1 is not before term T2 in the standard order.

Some further prediates involving omparison of terms are:

ompare(Op, T1, T2) The result of omparing terms T1 and T2 is Op,

where the possible values for Op are:

`=' if IT1 is idential to T2,

`<' if T1 is before T2 in the standard order,

`>' if T1 is after T2 in the standard order.

Thus ompare(=, T1,T2) is equivalent to T1 == T2.

sort(L1, L2) The elements of the list L1 are sorted into the standard order,

and any idential (i.e. `==') elements are merged, yielding the list L2.

keysort(L1, L2) The list L1 must onsist of items of the form Key{Value.

These items are sorted into order aording to the value of Key, yielding

the list L2. No merging takes plae.

5.8 Buffers

SB-Prolog supports the onept of bu�ers. A bu�er is atually a onstant and

the haraters that make up the bu�er is the name of the onstant. However,

the symbol table entry for a bu�er is not hashed and thus is not added to

the obj-list, so two di�erent bu�ers will never unify. Bu�ers an be alloated

either in permanent spae or on the heap. Bu�ers in permanent spae stay

there forever; bu�ers on the heap are dealloated when the \alloate bu�er"

goal is baktraked over.

A bu�er alloated on the heap an either be a simple bu�er, or it an be

alloated as a subbu�er of another bu�er already on the heap. A subbu�er

will be dealloated when its superbu�er is dealloated.

There are oasions when it is not known, in advane, exatly how muh

spae will be required and so how big a bu�er should be alloated. Sometimes

this problem an be overome by alloating a large bu�er and then, after

using as muh as is needed, returning the rest of the bu�er to the system.

This an be done, but only under very limited irumstanes: a bu�er is

alloated from the end of the permanent spae, the top of the heap, or from

the next available spae in the superbu�er; if no more spae has been used

31

beyond the end of the bu�er, a tail portion of the bu�er an be returned to

the system. This operation is alled \trimming" the bu�er.

The following is a list of library prediates for bu�er management:

allo perm(Size, Bu�) Alloates a bu�er with a length Size in the per-

manent (i.e. program) area. Size must be bound to a number. On

suessful return, Bu� will be bound to the alloated bu�er. The

bu�er, being in the permanent area, is never de-alloated.

allo heap(Size, Bu�) Alloates a bu�er of size Size on the heap and

binds Bu� to it. Sine it is on the heap, it will be dealloated on

baktraking.

trimbu�(Type, Bu�, Newlen) This allows (in some very restrited ir-

umstanes) the hanging of the size of a bu�er. Type is 0 if the bu�er

is permanent, 1 if the bu�er is on the heap. Bu� is the bu�er. Newlen

is an integer: the size (whih should be smaller than the original length

of the bu�er) to make the bu�er. If the bu�er is at the top of the heap

(if heap bu�er) or the end of the program area (if permanent) then the

heap-top (or program area top) will be readjusted down. The length

of the bu�er will be modi�ed to Newlen. This is (obviously) a very

low-level primitive and is for hakers only to implement grungy stu�.

onlength(Constant,Length) Sueeds if the length of the print name of

the onstant Constant (whih an be an atom, bu�er or integer), in

bytes, is Length. If Constant is a bu�er, it is the length of the bu�er;

if Constant is an integer, it is the length of the deimal representation

of that integer, i.e., the number of bytes that a $writename will use.

5.9 Modification of the Program

The prediates de�ned in this setion allow modi�ation of the program

as it is atually running. Clauses an be added to the program (asserted)

or removed from the program (retrated). At the lowest level, the system

supports the asserting of lauses with upto one literal in the body. It does

this by alloating a bu�er and ompiling ode for the lause into that bu�er.

Suh a bu�er is alled a \lause referene" (lref). The lref is then added to a

hain of lrefs. The hain of lrefs has a header, whih is a small bu�er alled

a \prediate referene" (prref), whih ontains pointers to the beginning and

end of its hain of lrefs. Clause referenes are quite similar to \database

referenes" of C-Prolog, and an be alled.

32

When lauses are added to the program through assert, an index is nor-

mally reated on the prinipal funtor of the �rst argument in the head of the

lause. The argument on whih the index is being reated may be hanged

via the index/3 diretive. In partiular, if no index is desired on a predi-

ate, this should be spei�ed using the index/3 diretive with the argument

number set to zero, e.g. if no index is desired on a prediate foo/3, then the

diretive

:- index(foo, 3, 0).

should be spei�ed.

The prediates that an be used to modify the program are the following:

assert(C) The urrent instane of C is interpreted as a lause and is added

to the program (with new private variables replaing any uninstanti-

ated variables), at the end of the list of lauses for that prediate. C

must be instantiated to a non-variable.

assert(C, Ref) As for assert/1, but also uni�es Ref with the lause refer-

ene of the lause asserted.

asserti(C,N) The urrent instane of C, interpreted as a lause, is asserted

to the program with an index on its N

th
argument. If N is zero, no

index is reated.

asserta(C) Similar to assert(C), exept that the new lause beomes the

�rst lause of the proedure onerned.

asserta(C, Ref) Similar to asserta(C), but also uni�es Ref with the lause

referene of the lause asserted.

assertz(C) Similar to assert(C), exept that the new lause beomes the

last lause of the proedure onerned.

assertz(C, Ref) Similar to assertz(C), but also uni�es Ref with the lause

referene of the lause asserted.

assert union(P , Q) The lauses for Q are added to the lauses for P . For

example, the all

| ?- assert union(p(X,Y),q(X,Y)).

has the e�et of adding the rule

33

p(X,Y) :- q(X,Y).

as the last rule de�ning p/2. If P is not de�ned, it results in the all

to Q being the only lause for P .

The variables in the arguments to assert union/2 are not signi�ant,

e.g. the above would have been equivalent to

| ?- assert union(p(Y,X),q(X,Y)).

or

| ?- assert union(p(,),q(,)).

However, the arities of the two prediates involved must math, e.g.

even though the goal

| ?- assert_union(p(X,Y), r(X,Y,Z)).

will sueed, the prediate p/2 will not in any way depend on the

lauses for r/3.

assert(Clause, AZ, Index,Clref) Asserts a lause to a prediate. Clause

is the lause to assert. AZ is 0 for insertion as the �rst lause, 1 for

insertion as the last lause. Index is the number of the argument on

whih to index (0 for no indexing). Clref is returned as the lause ref-

erene of the fat newly asserted. If the main funtor symbol of Clause

has been delared (by $assertf allo t/2, see below) to have its lauses

on the heap, the lref will be alloated there. If the prediate symbol

of Clause is unde�ned, it will be initialized and Clause added. If the

prediate symbol has ompiled lauses, it is �rst onverted to be dy-

nami (see symtype/2, Setion 5.10) by adding a speial lref that alls

the ompiled lauses. Fat, AZ and Index are input arguments, and

should be instantiated at the time of all; Clref is an output argument,

and should be uninstantiated at the time of all.

lause(P ,Q) Pmust be bound to a non-variable term, and the program is

searhed for a lause Cl whose head mathes P . The head and body

of the lause Cl is uni�ed with P and Q, respetively. If Cl is a unit

lause, Q will be uni�ed with `true'. Only interpreted lauses, i.e. those

reated through assert, an be aessed via lause/2.

34

lause(Head, Body, Ref) Similar to lause(Head,Body) but also uni�es

Ref with the database referene of the lause onerned. lause/3 an

be exeuted in one of two modes: either Head must be instantiated to

a non-variable term at the time of the all, or Ref must be instantiated

to a database referene. As in the ase of lause/2, only interpreted

lauses, i.e. those reated through assert, an be aessed via lause/3.

retrat(Clause) The �rst lause in the program that uni�es with Clause

is deleted from the program. This prediate may be used in a non-

deterministi fashion, i.e. it will suessively baktrak to retrat lauses

whose heads math Head. Head must be initially instantiated to a non-

variable. In the urrent implementation, retrat works only for asserted

(e.g. onsulted) lauses.

abolish(P) Completely remove all lauses for the proedure with head P

(whih should be a term). For example, the goal

| ?- abolish(p(, ,)).

removes all lauses for the prediate p/3.

abolish(P , N) Completely remove all lauses for the prediate P (whih

should be an atom) with arity N (whih should be an integer).

5.10 Internal Database

reorded(Key, Term, Ref) The internal database is searhed for terms

reorded under the key Key. These terms are suessively uni�ed with

Term in the order they our in the database; at the same time, Ref

is uni�ed with the database referene of the reorded item. The key

must be given, and may be an atom or omplex term. If it is a omplex

term, only the prinipal funtor is signi�ant.

reorda(Key, Term, Ref) The term Term is reorded in the internal database

as the �rst item for the key Key, where Ref is its database referene.

The key must be given, and only its prinipal funtor is signi�ant.

reordz(Key, ITerm, Ref) The term Term is reorded in the internal

database as the last item for the key Key, where Ref is its database

referene. The key must be given, and only its prinipal funtor is

signi�ant.

35

erase(Clref) The reorded item or lause whose database referene is Clref

is deleted from the internal database or program. Clref should be

instantiated at the time of all.

instane(Ref, Term) A (most general) instane of the reorded term whose

database referene is Ref is uni�ed with Term. Ref must be instanti-

ated to a database referene. Note that instane/2 will not be able to

aess terms that have been erased.

5.11 Information about the State of the Program

listing Lists in the urrent output stream the lauses for all the interpreted

prediates in the program, exept prediates that are \internal", i.e.

whose names begin with `$' or ` $', or whih are provided as prede�ned

(builtin or library) prediates. A bug in the urrent system is that even

though the user is allowed to rede�ne suh prediates, listing/0 does not

know about suh rede�nitions, and will not list suh prediates (they

may, however, be aessed through listing/1 if they are interpreted).

listing(A) The argument A may be a prediate spei�ation of the form

Name/Arity in whih ase only the lauses for the spei�ed prediate

are listed. Alternatively, it is possible for A to be a list of prediate

spei�ations, e.g.

| ?- listing([onatenate/3, reverse/2, go/0℄).

Only interpreted lauses, i.e. lauses reated via assert, an be aessed

through listing/1.

urrent atom(Atom) Generates (through baktraking) all urrently known

atoms, and uni�es eah in turn with Atom. However, atoms onsidered

\internal" symbols, i.e. those whose names begin with $ or $ are not

returned. The intrepid user who wishes to aess suh internal atoms

as well an use the goal

?- $urrent atom(Atom, 1).

urrent funtor(Name, Term) Generates (through baktraking) all ur-

rently known funtors (whih inludes funtion and prediate symbols),

and for eah one returns its name and most general term as Name

36

and Term respetively. However, funtors onsidered \internal" sym-

bols, i.e. those whose names begin with $ or $, or whih are provided

as prede�ned prediates, are not returned if both arguments to ur-

rent funtor/2 are variables. Internal symbols (of whih there are a

great many) as well as external ones may be aessed via

?- $urrent funtor(Name, Term, 1).

A bug in the urrent implementation is that even though the user

is allowed to rede�ne \internal" (builtin or library) prediates, ur-

rent funtor/2 does not know whether they have been rede�ned, and

hene will not return suh prediates if both arguments to urrent funtor/2

are variables.

urrent prediate(Name, Term) Generates (through baktraking) all

urrently known prediates, and for eah one returns its name and most

general term as Name and Term respetively. However, prediates

onsidered \internal", i.e. those whose names begin with $ or $, or

whih are provided as prede�ned prediates, are not returned if both

arguments to urrent prediate/2 are variables. Internal symbols (of

whih there are a great many) as well as external ones may be aessed

via

?- $urrent prediate(Name, Term, 1).

A bug in the urrent implementation is that even though the user

is allowed to rede�ne \internal" (builtin or library) prediates, ur-

rent prediate/2 does not know whether they have been rede�ned, and

hene will not return suh prediates if both arguments to urrent prediate/2

are variables.

prediate property(Term, Property) If Term is a term whose prinipal

funtor is a prediate, Property is uni�ed with the urrently known

properties of the orresponding prediate. If Term is a variable, then

it is uni�ed (suessively, through baktraking) with the most general

term for a prediate whose known properties are uni�ed with Property.

For example, all the interpreted prediates in the program may be

enumerated using

?- prediate property(X, interpreted).

37

If the �rst argument to prediate property/2 is uninstantiated at the

time of the all, \internal" prediates will not be returned. A bug in

the urrent implementation is that even though the user is allowed to

rede�ne suh \internal" prediates, prediate property/2 does not know

about suh rede�nitions, and will not return suh prediates if its �rst

argument is uninstantiated. Currently, the only properties that are

onsidered are interpreted and ompiled.

5.12 Environmental

op(priority, type, name) Treat name as an operator of the stated type

and priority (see Setion 3.2). name may also be a list of names, in

whih all are to be treated as operators of the stated type and priority.

break Causes the urrent exeution to be suspended at the next proedure

all. Then the message [Break (level 1) ℄ is displayed. The inter-

preter is then ready to aept input as though it was at the top level

(exept that at break level n > 0, the prompt is n: ?-). If another

all of break is enountered, it moves up to level 2, and so on. To

lose the break and resume the exeution whih was suspended, type

the END-OF-INPUT harater. Exeution will be resumed at the pro-

edure all where it had been suspended. Alternatively, the suspended

exeution an be aborted by alling the evaluable prediate abort,

whih auses a return to the top level.

abort Aborts the urrent exeution, taking you bak to top level.

save(F) The system saves the urrent state of the system into �le F .

restore(F) The system restores the saved state in �le F to be the urrent

state. One restrition imposed by the urrent system is that various

system parameters (e.g. stak sizes, permanent spae, heap spae, et.)

of the saved state have to be the same as that of the urrent invoa-

tion. Thus, it is not possible to save a state from an invoation where

50000 words of permanent spae had been alloated, and then restore

the same state in an invoation with 100000 words of permanent spae.

putime(X) Uni�es X with the time elapsed, in milliseonds, sine the

system was started up.

$getenv(Var,Val) Val is uni�ed with the value of the Unix environment

variable Var. Fails is Var is unde�ned.

38

statistis Prints out the urrent alloations and amounts of spae used for

eah of the four main areas: the permanent area, the loal stak, the

global stak and the trail stak. Does not work well unless the simulator

has been alled with the -s option (see Setion 7.2).

statistis(Keyword, List) Usually used with Keyword instantiated to a

keyword, e.g. `runtime', and List unbound. It uni�es List with a list of

statistis determined by Keyword. The keys and values are summarized

in Table 5.12. Times are given in milliseonds and sizes are given in

bytes.

Keyword List

runtime [pu time used by Prolog, pu time sine

last all to statistis/2℄

memory [total virtual memory, 0℄

ore (same as for the keyword memory)

program [program spae in use, program spae free℄

heap (same as for the keyword program)

global stak [global stak in use, global stak free℄

loal stak [loal stak in use, loal stak free℄

trail [trail stak in use, trail stak free℄

garbage olletion [0, 0℄

stak shifts [0, 0℄

Table 3: Run Time Statistis Prediates

Note:

1. For the keyword `memory' the seond element of the returned list is

always 0.

2. For the keyword `trail', the seond element of the returned list is the

amount of trail stak free. This is similar to Sistus Prolog (version 0.5),

but di�erent from Quintus Prolog (version 1.6).

3. Currently, SB-Prolog does not have garbage olletion or stak shifting,

hene the list values returned for these are [0, 0℄.

nodynload(P , N) Flags the prediate P with arity N as one that should

not be attempted to be dynamially loaded if it is unde�ned. If a

prediate so agged is unde�ned when a all to it is enountered, the

all fails quietly without trying to invoke the dynami loader or giving

39

an error message. P and N should be instantiated to an atom and an

integer, respetively, at the time of all to nodynload/2.

symtype(T , N) Uni�es N with the \internal type" of the prinipal funtor

of the term T , whih must be instantiated at the time of the all. N

is bound to 0 if T does not have an entry point de�ned (i.e. annot

be exeuted); to 1 if the prinipal funtor of T is \dynami", i.e. has

asserted ode; to 2 if the prinipal funtor for T is a ompiled prediate;

and 3 if T denotes a bu�er. Thus, for example, if the prediate p/2 is

a ompiled prediate whih has been loaded into the system, the goal

| ?- symtype(p(,), X).

will sueed binding X to 2; on the other hand, the goal

| ?- assert(q(a,b,)), symtype(q(, ,), X).

will sueed binding X to 1.

system(Call) Calls the operating system with the atom Call as argument.

For example, the all

| ?- system('ls').

will produe a diretory listing. Sine system/1 is exeuted by forking

o� a shell proess, it annot be used, for example, to hange the working

diretory of the simulator.

sysall(N , Args, Res) Exeutes the Unix system all number N with ar-

guments Args, and returns the result in Res. N is an integer, and Args

a Prolog list of the arguments to the system all. For example, to

exeute the system all reat(File,Mode), knowing that the sysall

number for the Unix ommand reat(2) is 8, we exeute the goal

| ?- sysall(8, [File, Mode℄, Des).

where Des is the �le desriptor returned by reat. The sysall numbers

for some Unix system alls are given in Table 4.

40

exit 1 fork 2

read 3 write 4

open 5 lose 6

reat 8 link 9

unlink 10 hdir 12

hmod 15 lseek 19

aess 33 kill 37

wait 84 soket 97

onnet 98 aept 99

send 101 rev 102

bind 104 setsokopt 105

listen 106 revmsg 113

sendmsg 114 getsokopt 118

revfrom 125 sendto 133

soketpair 135 mkdir 136

rmdir 137 getsokname 150

Table 4: Sysall Numbers for Some Unix Systems Calls

5.13 Global Values

SB-Prolog has some primitives that permit the programmer to manipulate

global values. These are provided primarily as an eÆieny hak, and need-

less to say, should be used with a great deal of are.

globalset(Term) Allows the user to save a global value. Term must be

bound to a ompound term, say p(V). V must be a number or a

onstant or a variable. If V is a number or a onstant, the e�et of

globalset(p(V)) an be desribed as:

retrat(p()), assert(p(V)).

I.e., p is a prediate that when alled will, from now on (until some

other hange by globalset/1), deterministially return V . If V is a vari-

able, the e�et is to make V a global variable whose value is aessible

by alling p. For example, exeuting globalset(p(X)) makes X a

global variable. X an be set by uni�ation with some other term. On

baktraking, X will be restored to its earlier value.

gennum(Newnum) gennum/1 sets its argument to a new integer every

time it is invoked.

41

gensym(C, Newsym) gensym/2 sets its seond argument to an atom whose

name is made by onatenating the name of the atom C to the ur-

rent gennum number. This new onstant is bound to Newsym. For

example, if the urrent gennum number is 37, then the all

| ?- gensym(aaa,X)

will sueed binding X to the atom `aaa37'.

5.14 Exotica

This setion desribes some low-level routines that are sometimes useful in

muking around with bu�ers. These are for serious hakers only.

$allo bu�(Size,Bu�,Type,Supbu�,Retode) Alloates a bu�er. Size is

the length (in bytes) of the bu�er to alloate; Bu� is the bu�er allo-

ated, and should be unbound at the time of the all; Type indiates

where to alloate the bu�er: a value of 0 indiates that the bu�er is

to be alloated in permanent spae, 1 that it should be on the heap,

and 2 indiates that it should be alloated from a larger heap bu�er;

Supbu� is the larger bu�er to alloate a subbu�er out of, and is only

looked at if the value of Type is 2; Retode is the return ode: a value

of 0 indiates that the bu�er has been alloated, while a value of 1

indiates that the bu�er ould not be alloated due to lak of spae.

The arguments Size, Type, and Supbu� (if Type = 2) are input argu-

ments, and should be bound at the time of the all; Bu� and Retode

are output arguments, and should be unbound at the time of the all.

all ref(Call, Ref) Calls the prediate whose database referene (prref) is

Ref, using the literal Call as the all. This is similar to all ref(Call,

Ref, 0).

all ref(Call, Ref, Tr) Calls the prediate whose database referene (prref)

is Ref, using the literal Call as the all. Tr must be either 0 or 1: if Tr is

0 then the all Call is made assuming the \trust" optimization will be

made; if Tr is 1 then the \trust" optimization is not used, so that any

new fat added before �nal failure will be seen by Call. (Also, this ur-

rently does not take advantage of any indexing that might have been

onstruted.) Call, Ref and Tr are all input arguments, and should be

instantiated at the time of all.

42

$assertf allo t(Palist,Size) Delares that eah prediate in the list Pal-

ist of prediate/arity pairs (terms of the form `/'(P ,N) where P is a

prediate symbol and N the arity of P) is to have any fats asserted

to them stored in a bu�er on the heap, to be alloated here. This

alloates a superbu�er of size Size on the heap. Future assertions to

these prediates will have their lauses put in this bu�er. When this

all is baktraked over, any lauses asserted to these prediates are

dealloated, and a subsequent all to any of those prediates will ause

the simulator to report an error and fail. Both Palist and Size are

input arguments, and should be instantiated at the time of all.

$db new prref(Prref,Where,Supbu�) Creates an empty Prref, i.e. one

with no fats in it. If alled, it will simply fail. Where indiates where

the prref should be alloated: a value of 0 indiates the permanent area,

while a value of 2 indiates that it is to be alloated as a subbu�er.

Supbu� is the superbu�er from whih to alloate Prref if Where is 2.

Where should be instantiated at the time of all, while Prref should be

uninstantiated; in addition, if Where is 2, Supbu� should be instanti-

ated at the time of all.

$db assert fat(Fat,Prref,AZ,Index,Clref,Where,Supbu�) Fat is a

fat to be asserted; Prref is a prediate referene to whih to add the

asserted fat; AZ is either 0, indiating the fat should be inserted as

the �rst lause in Prref, or 1, indiating it should be inserted as the

last; Index is 0 if no index is to be built, or n if an index on the n

th

argument of the fat is to be used. (Asserting at the beginning of

the hain with indexing is not yet supported.) Where indiates where

the lref is to be alloated: a value of 0 indiates that it should be

in the permanent area, while a value of 2 indiates that it should be

alloated as a subbu�er of Supbu�. Clref is returned and it is the lause

referene of the asserted fat. Fat, Prref, AZ, Index, and Where are

input arguments, and should be instantiated at the time of all; in

addition, if Where is 2, then Supbu� should also be instantiated. Clref

is an output argument, and should be uninstantiated at the time of

all.

$db add lref(Fat,Prref,AZ,Index,Clref,Where,Supbu�) Adds the lref

Clref to the prref Prref. Fat is the fat that has been ompiled into

Clref (used only to get the arity and for indexing). The other param-

eters are as for $db assert fat/7.

43

$db all prref(Call,Prref) Calls the prref Prref using the literal Call as

the all. The all is done by simply branhing to the �rst lause. New

fats added to Prref after the last fat has been retrieved by Call, but

before Call is failed through, will not be used. Both Call and Prref are

input arguments, and should be instantiated at the time of all.

$db all prref s(Call,Prref) This also alls the prref Prref using Call as

the all. The di�erene from $db all prref is that this does not use the

\trust" optimization, so that any new fat added before �nal failure will

be seen by Call. (Also, this urrently does not take advantage of any

indexing that might have been onstruted, while $db all prref does.)

Both Call and Prref are input arguments, and should be instantiated

at the time of all.

$db get lauses(Prref,Clref,Dir) This returns, nondeterministially, all

the lause referenes Clref for lauses asserted to prref Prref. If Dir

is 0, then the �rst lref on the list is returned �rst; if Dir is 1, then they

are returned in reverse order. Prref and Dir are input arguments, and

should be instantiated at the time of all; Clref is an output argument,

and should be uninstantiated at the time of all.

6 Debugging

6.1 High-Level Tracing

The preferred method of traing exeution is through the prediate trae/1.

This prediate takes as argument a term P/N , where P is a prediate name

and N its arity, and sets a \trae point" on the orresponding prediate; it

an also be given a list of suh terms, in whih ase a trae point is set on

eah member of the list. For example, exeuting

| ?- trae(pred1/2), trae([pred2/3, pred3/2℄).

sets trae points on prediates pred1/2, pred2/3 and pred3/2. Only those

prediates are traed that have trae points set on them.

If all the prediates in a �le are to be traed, it is usually onvenient to

use the PredList parameter of ompile/4 or onsult/3, e.g.:

| ?- ompile(foo, 'foo.out', [t,v℄, Preds), load('foo.out'),

trae(Preds).

44

or

| ?- onsult(foo, [v℄, Preds), trae(Preds).

Notie that in the �rst ase, the t ompiler option (see Setion 8.2) should be

spei�ed in order to turn o� ertain assembler optimizations and failitate

traing. In the seond ase, the same e�et may be ahieved by speifying

the t option to onsult.

The trae points set on prediates may be overwritten by loading byte

ode �les via load/1, and in this ase it may be neessary to expliitly set

trae points again on the loaded prediates. This does not happen with

onsult: prediates that were being traed ontinue to have trae points set

after onsulting.

The traing failities of SB-Prolog are in many ways very similar to those

of C-Prolog. However, leashing is not supported, and only those prediates

an be traed whih have had trae points set on them through trae/1.

This makes trae/1 and spy/1 very similar: essentially, trae amounts to two

levels of spy points. In SB-Prolog, traing ours at Call (i.e. entry to a

prediate), suessful Exit from a lause, and Failure of the entire all. The

traing options available during debugging are the following:

, newline: Creep Causes the system to single-step to the next port (i.e.

either the entry to a traed prediate alled by the exeuted lause, or

the suess or failure exit from that lause).

a: Abort Causes exeution to abort and ontrol to return to the top level

interpreter.

b: Break Calls the evaluable prediate break, thus invoking reursively a

new inarnation of the system interpreter. The ommand prompt at

break level n is

n: ?-

The user may return to the previous break level by entering the system

end-of-�le harater (e.g. trl-D), or typing in the atom end of �le; or

to the top level interpreter by typing in abort.

f: Fail Causes exeution to fail, thus transferring ontrol to the Fail port of

the urrent exeution.

h: Help Displays the table of debugging options.

45

l: Leap Causes the system to resume running the program, only stopping

when a spy-point is reahed or the program terminates. This allows the

user to follow the exeution at a higher level than exhaustive traing.

n: Nodebug Turns o� debug mode.

q: Quasi-skip This is like Skip exept that it does not mask out spy points.

r: Retry (fail) Transfers to the Call port of the urrent goal. Note, how-

ever, that side e�ets, suh as database modi�ations et., are not

undone.

s: Skip Causes traing to be turned o� for the entire exeution of the proe-

dure. Thus, nothing is seen until ontrol omes bak to that proedure,

either at the Suess or the Failure port.

Other prediates that are useful in debugging are:

untrae(Preds) where Preds is a term P/N , where P is a prediate name

and N its arity, or a list of suh terms. Turns o� traing on the spei�ed

prediates. Preds must be instantiated at the time of the all.

spy(Preds) where Preds is a term P/N , where P is a prediate name and

N its arity, or a list of suh terms. Sets spy points on the spei�ed

prediates. Preds must be instantiated at the time of the all.

nospy(Preds) where Preds is a term P/N , where P is a prediate name

and N its arity, or a list of suh terms. Removes spy points on the

spei�ed prediates. Preds must be instantiated at the time of the all.

debug Turns on debugging mode. This auses subsequent exeution of

prediates with trae or spy points to be traed, and is a no-op if

there are no suh prediates. The prediates trae/1 and spy/1 ause

debugging mode to be turned on automatially.

nodebug Turns o� debugging mode. This auses trae and spy points to

be ignored.

debugging Displays information about whether debug mode is on or not,

and lists prediates that have trae points or spy points set on them.

traepreds(L) Binds L to a list of terms P/N where the prediate P of

arity N has a trae point set on it.

46

spypreds(L) Binds L to a list of terms P/N where the prediate P of arity

N has a spy point set on it.

There is one known bug in the pakage: attempts to set trae points, via

trae/1, on system and library prediates that are used by the trae pakage

an ause bizarre behaviour.

6.2 Low-Level Tracing

SB-Prolog also provides a faility for low-level traing of exeution. This an

be ativated by invoking the simulator with the -T option, or through the

prediate $trae/0. It auses trae information to be printed out at every

all (inluding those to system trap handlers). The volume of suh trae

information an very beome large very quikly, so this method of traing is

not reommended in general.

Low-level traing may be turned o� using the prediate untrae/0.

7 The Simulator

The simulator resides in the SB-Prolog system diretory sim. The following

setions desribe various aspets of the simulator.

7.1 Invoking the Simulator

The simulator is invoked by the ommand

sbprolog b file

where b �le is a byte ode �le resulting from the ompilation of a Prolog pro-

gram. In almost all ases, the user will wish to interat with the SB-Prolog

query evaluator, in whih ase b �le will be $readloop, and the ommand

will be

sbprolog Path/$readloop

where Path is the path to the diretory ontaining the ommand interpreter

$readloop. This diretory, typially, is the system diretory modlib.

The ommand interpreter reads in a query typed in by the user, evaluates

it and prints the answer(s), repeating this until it enounters an end-of-�le

(the standard end-of-�le harater on the system, e.g. trl-D), or the user

types end of �le or halt.

47

The user should ensure that the the diretory ontaining the exeutable

�le sim (typially, the system diretory sim) is inluded in the shell variable

path; if not, the full path to the simulator will have to be spei�ed.

In general, the simulator may be invoked with a variety of options, as

follows:

sbprolog -options b file

or

sbprolog -option1 -option2 : : : -optionn b file

The options reognized by the simulator are desribed below.

When alled with a byte ode �le b �le, the simulator begins exeution

with the �rst lause in that �le. The �rst lause in suh a �le, therefore,

should be a lause without any arguments in the head (otherwise, the sim-

ulator will attempt to dereferene argument pointers in the head that are

really pointing into deep spae, and usually ome to a sad end). If the

user is exeuting a �le in this manner rather than using the ommand in-

terpreter, he should also be areful to inlude the unde�ned prediate handler

` $unde�ned pred'/1, whih is normally de�ned in the �le modlib/$init sys.P.

7.2 Simulator Options

The following is a list of options reognized by the simulator.

T Generates a trae at entry to eah alled routine.

d Produes a disassembled dump of b �le into a �le named `dump.pil' and

exits.

n Adds mahine addresses when produing trae and dump.

s Maintains information for the builtin statistis/0. Default: o�.

m size Alloates size words (4 bytes) of spae to the loal stak and heap

together. Default: 100000.

p size Alloates size words of spae to the program area. Default: 100000.

b size Alloates size words of spae to the trail stak. Default: m/5, where

m is the amount of spae alloated to the loal stak and heap together.

This parameter, if spei�ed, must follow the -m parameter.

48

As an example, the ommand

sbprolog -s -p 60000 -m 150000 \$readloop

starts the simulator exeuting the ommand interpreter with 60000 bytes

of program spae, 150000 bytes of loal and global stak spae and (by

default) 30000 bytes of trail stak spae; the s option also results in statistis

information being maintained.

7.3 Interrupts

SB-Prolog provides a faility for exeption handling using user-de�nable in-

terrupt handlers. This an be used both for external interrupts, e.g. those

generated from the keyboard by the user or from signals other proesses;

or internal traps, e.g. those aused by stak overows, enountering unde-

�ned prediates, et. For example, the \unde�ned prediate" interrupt is

handled, by default, by the prediate ` $unde�ned pred'/1, whih is de�ned

in the �les modlib/sr/$init sys.P and modlib/sr/$readloop.P. The

default ation on enountering an unde�ned prediate is to attempt to dy-

namially load a �le whose name mathes that of the unde�ned prediate.

However, the user may easily alter this behaviour by rede�ning the unde�ned

prediate handler.

In general, interrupts are handled by the prediate ` $interrupt'/2: a

all to this prediate is of the form ` $interrupt'(Call, Code), where Call is

the all that generated the interrupt, and Code is an integer indiating the

nature of the interrupt. For eah interrupt ode, the interrupt handler then

alls a handler that is designed to handle that partiular kind of interrupt.

At this point, the following interrupt odes have prede�ned meanings:

0 unde�ned prediate;

1 keyboard interrupt (^C);

2 stak overow.

Other interrupt odes may be inorporated by modifying the de�nition

of the prediate ` $ interrupt'/2 in the �le modlib/sr/$readloop.P.

Interrupts during exeution are signalled from within the WAM simu-

lator. The general method for raising an interrupt is using the funtion

set interode in the �le sim/sub inst.: to raise an interrupt whose ode is

n, the line

49

lpreg = set interode(n);

is added to the appropriate plae in the main loop of the interpreter, de�ned

in sim/main..

8 The Compiler

The ompiler translates Prolog soure �les into byte-ode objet �les. It

is written entirely in Prolog. The byte ode for the ompiler an be found

in the SB-Prolog system diretory mplib, with the soure ode resident in

mplib/sr.

Byte ode �les may be onatenated together to produe other byte ode

�les. Thus, for example, if foo1 and foo2 are byte ode �les resulting from

the ompilation of two Prolog soure programs, then the �le foo, obtained

by exeuting the shell ommand

at foo1 foo2 > foo

is a byte ode �le as well, and may be loaded and exeuted. In this ase,

loading and exeuting the �le foo would give the same result as loading

foo1 and foo2 separately, whih in turn would be the same as onatenating

the original soure �les and ompiling this larger �le. This makes it easier

to ompile large programs: one need only break them into smaller piees,

ompile the individual piees, and onatenate the byte �les together.

The following setions desribe the various aspets of the ompiler in

more detail.

8.1 Invoking the Compiler

The ompiler is invoked through the Prolog prediate ompile:

| ?- ompile(InFile [, OutFile ℄ [, OptionsList ℄).

where optional parameters are enlosed in brakets. InFile is the name of

the input (i.e. soure) �le; OutFile is the name of the output �le (i.e. byte

ode) �le; OptionsList is a list of ompiler options (see below).

The input and output �le names must be Prolog atoms, i.e. either begin

with a lower ase letter or dollar sign `$', and onsist only of letters, digits,

and undersores; or, be enlosed within single quotes. If the output �le name

is not spei�ed, it defaults to InFile.out. The list of options, if spei�ed, is

a Prolog list, i.e. a term of the form

50

[option1, option2, : : :, optionn ℄.

If left unspei�ed, it defaults to the empty list [℄.

In fat, the output �le name and the options list may be spei�ed in any

order. Thus, for example, the queries

| ?- ompile('/usr/debray/foo', foo out, [v℄).

and

| ?- ompile('/usr/debray/foo', [v℄, foo out).

are equivalent, and speify that the Prolog soure �le `/usr/debray/foo' is

to be ompiled in verbose mode (see \Compiler Options" below), and that

the byte ode is to be generated into the �le foo out.

The ompile prediate may also be alled with a fourth parameter:

| ?- ompile(InFile, OutFile, OptionsList, PredList).

where InFile, OutFile andOptionsList are as before; ompile/4 uni�es PredList

with a list of terms P=N denoting the prediates de�ned in InFile, where P

is a prediate name and N its arity. PredList, if spei�ed, is usually given

as an uninstantiated variable; its prinipal use is for setting trae points on

the prediates in the �le (see Setion 6), e.g. by exeuting

| ?- ompile('/usr/debray/foo', foo out, [v℄, L),

load(foo out), trae(L).

Notie that PredList an only appear in ompile/4.

8.2 Compiler Options

The following options are urrently reognized by the ompiler:

a Spei�es that an \assembler" �le is to be reated. The name of the assem-

bler �le is obtained by appending .asl to the soure �le name. While

the writing out of assembly ode slows down the ompilation proess

to some extent, it allows the assembler to do a better job of optimizing

away indiret subroutine linkages (sine in this ase the assembler has

assembly ode for the entire program to work with at one, not just a

single prediate). This results in ode that is faster and more ompat.

d Dumps expanded maros to the user (see Setion 10).

51

e Expand maros (see Setion 10).

t If spei�ed, turns o� assembler optimizations that eliminate indiret branhes

through the symbol table in favour of diret branhes. This is useful in

debugging ompiled ode. It is neessary if the extension table feature

is to be used.

v If spei�ed, ompiles in \verbose" mode, whih auses messages regarding

progress of ompilation to be printed out.

8.3 Assembly

The SB-Prolog assembler an be invoked by loading the ompiler and using

the prediate $asm/3:

| ?- $asm(InFile, OutFile, OptionsList).

where InFile is a Prolog atom whih is the name of a WAM assembly soure

�le (e.g. the \.asl" �le generated when a Prolog program is ompiled with

the \a" option), OutFile is an atom whih is the name of the intended byte

ode �le, and OptionsList is a list of options. The options reognized by the

assembler are:

v \Verbose" mode. Prints out information regarding progress of assembly.

t \Trae". If spei�ed, the assembler generates ode to fore proedure alls

to branh indiretly via the symbol table, instead of using a diret

branh. This is useful for traing ompiled ode. It is neessary if the

extension table feature is to be used.

The assembler is intended primarily to support the ompiler, so the as-

sembly language syntax is quirky in plaes. The interested reader is advised

to look at the assembly �les resulting from ompilation with the \a" option

for more on SB-Prolog assembler syntax.

8.4 Compiler Directives

8.4.1 Mode Delarations

The user may delare input and output arguments of prediates using mode

delarations. These delarations, for an n-ary prediate p, are of the form

:- mode p(Mode).

52

where Mode onsists of n mode values; or

:- mode(p, n, ModeList)

where ModeList is a list of mode values of length n. Mode values may be

the following:

, ++ Indiates that the orresponding argument position is always a ground

term in any all to the prediate. The argument is therefore an input

argument.

nv, + Indiates that the orresponding argument position is always a non-

variable term (i.e. is instantiated) in any all in any all to the predi-

ate. The argument is therefore an input argument.

f, { Indiates that the orresponding argument position is always an unin-

stantiated variable in any all to the prediate. The argument is there-

fore an output argument.

d, ? Indiates that the orresponding argument may be any term in alls to

the prediate.

For example, a 3-ary prediate p whose �rst argument is always a ground

term in a all, whose seond argument is always uninstantiated, and whose

third argument an be any term, may have its mode delared as

:- mode p(++, --, d)

or as

:- mode(p, 3, [, f, d℄).

Currently, mode information is used by the ompiler in two ways. First,

it often allows more ompat ode to be generated. The seond use is in

guiding program transformations that allow faster ode to be generated. For

example, the prediate

part([℄, _, [℄, [℄).

part([E|L℄, M, [E|U1℄, U2) :- E =< M, part(L, M, U1, U2).

part([E|L℄, M, U1, [E|U2℄) :- E > M, part(L, M, U1, U2).

exeutes about 30% faster with the mode delaration

:- mode part(++, ++, -, -).

than without.

53

8.4.2 Indexing Diretives

The ompiler usually generates an index on the prinipal funtor of the �rst

argument of a prediate. The user may diret the ompiler to generate an

index on any other argument by means of an indexing diretive. This is of

the form

:- index(Pred, Arity, IndexArg)

indiating that an index should be reated on the IndexArg

th
argument of

the prediate Pred/Arity. All of the values Pred, Arity and IndexArg should

be bound in the diretive: Pred should be an atom, Arity a nonnegative

integer, and IndexArg an integer between 0 and Arity. If IndexArg is 0,

then no index is reated for that prediate. As an example, if we wished to

reate an index on the third argument of a 5-ary prediate foo, the ompiler

diretive would be

:- index(foo, 5, 3).

An index diretive may be plaed anywhere in the �le ontaining the predi-

ate it refers to.

9 Libraries

To desribe how libraries are urrently supported in our system, we must

desribe the interrupt handler $unde�ned pred/1. The system keeps a table

of libraries and routines that are needed from eah. When a prediate is

found to be unde�ned, the table is searhed to see if it is de�ned by some

library �le. If so, that �le is loaded (if it hasn't been previously loaded) and

the assoiation is made between the routine name as de�ned in the library

�le, and the routine name as used by the invoker.

The table of libraries and needed routines is:

de�ned mods(Modname, [pred

1
=arity

1
; : : : ; pred

n
=arity

n
℄).

where Modname is the name of the library. It exports n prediate de�nitions.

The �rst exported pred is of arity arity

1
, and needs to be invoked by the

name of pred

1
.

The table of libraries that have already been loaded is given by

loaded mods(Modname).

54

A library �le is a �le of prediate de�nitions, together with a fat de�ning a

list of prediates exported by it; and a set of fats, eah of whih spei�es,

for some other library �le, the prediates imported from that library �le.

For example, onsider a library name `p'. It ontains a single fat, named

p export, that is true of the list of prediate/arities that are exported. E.g.

p export([p1/2, p2/4℄)

indiates that the module p exports the prediates p1/2 and p2/4. For eah

library m whih ontains prediates needed by the library p, there is a fat

for p use, desribing what library is needed and the names of the prediates

de�ned there that are needed. For example, if library p needs to import

prediates ip1/2 and ip2/3 from library q, there would be a fat

p use(q,[ip1/2, ip2/3℄)

where q is a module that exports two prediates: one 2-ary and one 3-ary.

This list orresponds to the export list of library q.

The orrespondene between the prediates in the export list of an ex-

porting library, and those in the import or use list of a library whih imports

one or more of them, is by position, i.e. the prediate names at the exporting

and importing names may be di�erent, and the assoiation between names

in the two lists is by the position in the list. If the importing library does

not wish to import one or more of the prediates exported by the exporting

module, it may put an anonymous variable in the orresponding position in

its use list. Thus, for example, if library p above had wished to import only

the prediate ip2/3 from library q, the orresponding use fat would be

p use(q, [, ip2/3℄).

The initial set of prediates and the libraries from whih they are to be

loaded is set up by an initial all to $pror/0 (see the SB-Prolog system

�le modlib/sr/$pror.P). This prediate makes initial alls to the pred-

iate $de�ne mod whih set up the tables desribed above so that the use

of standard prediates will ause the orret libraries to be loaded in the

$unde�ned pred routine, and the orret names to be used.

10 Maros

SB-Prolog features a faility for the de�nition and expansion of maros that

is fully ompatible with the runtime system. Its basi mehanism is a simple

55

partial evaluator. It is alled by both onsult and ompile, so that maro

expansion ours independently of whether the ode is interpreted or om-

piled (but not when asserted). Moreover, the maro de�nitions are retained

as lauses at runtime, so that invoation of maros via all/1 at runtime (or

from asserted lauses) does not pose a problem. This means, however, that

if the same maro is used in many di�erent �les, it will be loaded more than

one, thus leading to wasted spae. This ought to be thought about and

�xed.

The soure for the maro expander is in the SB-Prolog system �le modlib/sr/$ma.P.

10.1 Defining Macros

`Maros', or prediates to be evaluated at ompile-time, are de�ned by

lauses of the form

Head ::- Body

where fats have `true' as their body. The partial evaluator will expand

any all to a prediate de�ned by ::{/2 that uni�es with the head of only one

lause in ::{/2. If a all uni�es with the head of more than one lause in ::{

/2, it will not be expanded Notie that this is not a fundamental restrition,

sine `;' is permitted in the body of a lause. The partial evaluator also

onverts eah de�nition of the form

Head ::- Body.

to a lause of the form

Head :- Body.

and adds this seond lause to the other \normal" lauses that were read

from the �le. This ensures that alls to the maro at runtime, e.g. through

all/1 or from unexpanded alls in the program do not ause any problems.

The partial evaluator is atually a Prolog interpreter written `purely' in

Prolog, i.e., variable assignments are expliitly handled. This is neessary to

be able to handle impure onstruts suh as var(X), X=a. As a result this

is a very slow Prolog evaluator.

Sine na��ve partial evaluation an go into an in�nite loop, SB-Prolog's

partial evaluator maintains a depth-bound and will not expand reursive

alls deeper than that. The depth is determined by the globalset prediate

$ma depth. The default value for $ma depth is 50. This an be hanged

to some other value n by exeuting

| ?- globalset($ma depth(n)).

56

10.2 Macro Expander Options

The following options are reognized by the maro expander:

d Dumps all lauses to the user after expansion. Useful for debugging.

e Expand maros. If omitted, the expander simply onverts eah ::{/2 lause

to a normal :{/2 lause.

v \Verbose" mode. Prints maros that are/are not being expanded.

11 Extension Tables: Memo Relations

Extension tables store the alls and answers for a prediate. If a all has

been made before, answers are retrieved from the extension table instead of

being reomputed. Extension tables provide a ahing mehanism for Pro-

log. In addition, extension tables a�et the termination harateristis of

reursive programs. Some Prolog programs, whih are logially orret, en-

ter an in�nite loop due to reursive prediates. An extension table saved on

reursive prediates an �nd all answers (provided the set of suh answers is

�nite) and terminate for some logi programs for whih Prolog's evaluation

strategy enters an in�nite loop. Iterations over the extension table exeu-

tion strategy provides omplete evaluation of queries over funtion-free Horn

lause programs.

To be able to use the simple extension table evaluation on a set of pred-

iates, the soure �le should either be onsulted, or ompiled with the t

option (the t option keeps the assembler from optimizing subroutine linkage

and allows the extension table faility to interept alls to prediates).

To use extension table exeution, all prediates that are to be saved in

the extension table must be passed to et/1. For example,

| ?- et([pred1/1, pred2/2℄), et(pred3/2)

will set up \ET-points" for the for prediates pred1/1, pred2/2 and pred3/2,

whih will ause extension tables for these prediates to be maintained during

exeution. At the time of the all to et/1, these prediates must be de�ned,

either by having been loaded, or through onsult.

The prediate noet/1 takes a list of prediate/arity pairs for whih ET-

points should be deleted. Notie that one an ET-point has been set up for

a prediate, it will be maintained unless expliitly deleted via noet/1. If the

de�nition of a prediate whih has an ET-point de�ned is to be updated,

57

the ET-point must �rst be deleted via noet/1. The prediate an then be

reloaded and a new ET-point established. This is enfored by the failure of

the goal \et(P/N)" if an ET-point already exists for the argument prediate.

In this ase, the following error message will be displayed:

et already defined for: P/N

There are, in fat, two extension table algorithms: a simple one, whih

simply ahes alls to prediates whih have ET-points de�ned; and a om-

plete ET algorithm, whih iterates the simple extension table algorithm until

no more answers an be found. The simple algorithm is more eÆient than

the omplete one; however, the simple algorithm is not omplete for ertain

espeially nasty forms of mutual reursion, while the omplete algorithm is.

To use the simple extension table algorithm, prediates an simply be alled

as usual. The omplete extension table algorithm may be used via the query

| ?- et star(Query).

The extension table algorithm is intended for prediates that are \essen-

tially pure", and results are not guaranteed for ode using impure ode. The

extension table algorithm saves only those answers whih are not instanes

of what is already in the table, and uses these answers if the urrent all is an

instane of a all already made. For example, if a all p(X, Y), with X and

Y uninstantiated, is enountered and inserted into the extension table, then

a subsequent all p(X, b) will be omputed using the answers for p(X, Y)

already in the extension table. Notie that this might not work if var/nonvar

tests are used on the seond argument in the evaluation of p.

Another problem with using impure ode is that if an ET prediate is

ut over, then the saved all implies that all answers for that prediate were

omputed, but there are only partial results in the ET beause of the ut. So

on a subsequent all the inomplete extension table answers are used when

all answers are expeted. An example is shown in Figure 11

r(X,Y) :- p(X,Y),q(Y,Z),!,fail.

| ?- r(X,Y) ; p(X,Y).

Figure 3: Extension Table Example

Let p be an ET prediate whose evaluation yields many tuples. In the

evaluation of the query, r(X,Y) makes a all to p(X,Y). Assuming that there

58

is a tuple suh that q(Y,Z) sueeds with the �rst p tuple then the evaluation

of p is ut over. The all to p(X,Y) in the query uses the extension table

beause of the previous all in the evaluation of r(X,Y). Only one answer

is found, whereas the relation p ontains many tuples, so the omputation

is not omplete. Note that \uts" used within the evaluation of an ET

prediate are ok, as long as they don't ut over the evaluation of another ET

prediate. The evaluation of the prediate that uses uts does not ut over

any ET proessing (suh as storing or retrieving answers) so that the tuples

that are omputed are saved. In the following example, the ET is used to

generate prime numbers where an ET point is put on prime/1. Example:

prime(I) :- globalset(globalgenint(2)),fail. /* Generating Primes */

prime(I) :- genint(I), not(div(I)).

div(I) :- prime(X), 0 is I mod X.

genint(N) :-

repeat,

globalgenint(N),

N1 is N+1,

globalset(globalgenint(N1)).

The following summarizes the library prediates supporting the extension

table faility:

et(L) Sets up an ET-point on the prediates L, whih auses alls and

answers to these prediates to be saved in an \extension table". L

is either a term Pred/Arity, where Pred is a prediate symbol and

Arity its arity, or a set of suh terms represented as a list. L must be

instantiated, and the prediates spei�ed in it de�ned, at the time of

the all to et/1. Gives error messages and fails if any of the prediates

in L is unde�ned, or if an ET-point already exists on any of them; in

this ase, no ET-point is set up on any of the prediates in L.

et star(Goal) Invokes the omplete extension table algorithm on the goal

Goal.

et points(L) Uni�es L with a list of prediates for whih an ET-point is

de�ned. L is the empty list [℄ if there are no ET-points de�ned.

59

noet(L) Deletes ET-points on the prediates spei�ed in L. L is either a

term P/N , where P is the name of a prediate and N its arity, or a

set of suh terms represented as a list. Gives error messages and fails if

there is no ET-point on any of the prediates spei�ed in L. Deleting

an ET-point for a prediate also removes the alls and answers stored

in the extension table for that prediate. The extension tables for

all prediates for whih ET-points are de�ned may be deleted using

et points/1 in onjuntion with noet/1.

L must be instantiated at the time of the all to noet/1.

et remove(L) Removes both alls and answers for the prediates spei�ed

in L. In e�et, this results in the extension table for these prediates

to be set to empty. L must be instantiated at the time of the all to

either a term P/N , where P is a prediate with arity N , or a list of

suh terms. An error ours if any of the prediates in L does not have

an ET-point set.

All extension tables an be emptied by using et points/1 in onjuntion

with et remove/1.

et answers(P=N , Term) Retrieves the answers stored in the extension ta-

ble for the prediate P/N in Term one at a time. Term is of the form

P (t1; : : : ; tN). An error results and et answers/2 fails if P=N is not

fully spei�ed (ground), or if P=N does not have an ET-point set.

et alls(P/N, Term) Retrieves the alls stored in the extension table for

the prediate P=N in Term one at a time. Term is of the form

P (t1; : : : ; tN). An error results and et alls/2 fails if P=N is not fully

spei�ed (ground), or if P/N does not have an ET-point set.

12 De�nite Clause Grammars

De�nite lause grammars are an extension of ontext free grammars, and

may be onveniently expressed in Prolog. A grammar rule in Prolog has the

form

Head --> Body.

with the interpretation \a possible form for Head is Body". Extra onditions,

in the form of expliit Prolog literals or ontrol onstruts suh as if-then-else

(->) or ut (!), may be inluded in Body.

60

The syntax of DCGs supported by SB-Prolog is as follows:

1. A non-terminal symbol may be any Prolog term other than a variable.

2. A terminal symbol may be any Prolog term. To distinguish terminals

from nonterminals, a sequene of terminal symbols

a; b; ; d; : : :

is written as a Prolog list [a; b; ; d; : : :℄, with the empty sequene writ-

ten as the empty list [℄. If the terminal symbols are ASCII harater

odes, they an be written (as elsewhere) as strings.

3. Extra onditions, in the form of Prolog literals, an be inluded in the

right-hand side of a rule by enlosing suh onditions in urly braes,

f and g. E.g., one an write

natnum(X) --> finteger(X), X >= 0g.

4. The left hand side of a rule onsists of a single nonterminal. Notie

that \push-bak lists" are thus not supported.

5. The right hand side of a rule may ontain alternatives (written using

the disjuntion operator `;' or |), and ontrol primitives suh as if-then-

else (->), not/1 and ut (`!'). The use of not/1 on the right hand side of

grammar rules is not reommended, however, beause their semantis

in this ontext is murky at best. All other ontrol primitives, e.g.

repeat/0, must expliitly be enlosed within urly braes if they are

not to be interpreted as nonterminals.

Exept for the restrition of lists of terminals in the left hand sides of

rules, the translation of DCGs in SB-Prolog is very similar to that in Quintus

Prolog.

Library prediates supporting DCGs are the following:

dg(Rule, Clause) Sueeds if the DCG rule Rule orresponds to the Pro-

log lause Clause. At the time of all, Rule must be bound to a term

whose prinipal funtor is ->/2.

phrase(Phrase, List) The usual way to ommene exeution of grammar

rules. The list List is a phrase (i.e., sequene of terminals) generated

61

by Phrase aording to the urrent grammar rules. Phrase is a non-

terminal (in general, the right hand side of a grammar rule), and must

be instantiated to a nonvariable term in the all. If List is bound to

a list of terminals in the all, then the goal orresponds to parsing

List; if List is unbound in the all, then the grammar is being used for

generation.

expand term(T1, T2) This prediate is used to transform terms that are

read in, when a �le is onsulted or ompiled. The usual use is to trans-

form grammar rules into Prolog lauses: if T1 is a grammar rule, then

T2 is the orresponding Prolog lause. Users may de�ne their own

transformations by de�ning the prediate term expansion/2. When

a term T1 is read in when a �le is being ompiled or onsulted, ex-

pand term/2 �rst alls term expansion/2: if the expansion sueeds,

the transformed term so obtained is used; otherwise, if T1 is a gram-

mar rule, then it is expanded using dg/2; otherwise, T1 is used as

is.

`C'(S1, Terminal, S2) Used to handle terminal symbols in the expansion

of grammar rules. Not usually of diret use to the user. This is de�ned

as

`C'([X|S℄, X, S).

13 Pro�ling Programs

There is an experimental utility for pro�ling programs interatively. Two

kinds of pro�ling are supported: one may ount the number of alls to a

prediate, or ompute the time spent in a prediate. It is important that the

prediates being pro�led are either onsulted, or ompiled with the t option,

so that alls to the relevant prediates an be interepted by the pro�ler.

To use the pro�ler, prediates whose alls are to be ounted must be

passed to ount/1, e.g.

| ?-- ount([p/1, q/2℄), ount(r/3).

will set up \ount-points" on the prediates p/1, q/2 and r/3. Prediates

whose alls are to be timed have to be passed to time/1, e.g.

| ?-- time([s/1, t/2℄), time(u/3).

62

will set up \time-points" on the prediates s/1, t/2 and u/3. It is possi-

ble to set both ount-points and time-points on the same prediate. After

ount-points and time-points have been set, the program may be exeuted as

many times as desired: the pro�ling system will aumulate all ounts and

exeution times for the appropriate prediates. Exeution pro�les may be

obtained using the prediates prof stats/0 or prof stats/1. Using prof stats/0

to display the exeution pro�le will ause the all ounts and exeution times

of prediates being pro�led to be reset to 0 (this may be avoided by using

prof stats/1).

It should be noted that in this ontext, the \exeution time" for a predi-

ate is an estimate of the total time spent in the subtrees below alls to that

prediate (inluding failed subtrees): thus, the exeution time �gures may

be dilated slightly if the subtree below a timed prediate ontains prediates

that are being pro�led, beause of the time taken for updating the all ounts

and exeution times. For eah prediate, the exeution time is displayed as

the fration of time spent, in omputation in subtrees under alls to that

prediate, relative to the time elapsed from the last time pro�ling was timed

on or the last time pro�ling statistis were taken, whihever was more reent.

Bugs: May behave bizarrely if a prediate being pro�led ontains uts.

The following summarizes the library prediates supporting pro�ling:

ount(L) Sets up a ount-point on the prediates L, whih auses alls to

these prediates to be ounted, and turns pro�ling on. L is either a

term Pred/Arity, where Pred is a prediate symbol and Arity its arity,

or a set of suh terms represented as a list. L must be instantiated, and

the prediates spei�ed in it de�ned, at the time of the all to ount/1.

time(L) Sets up a time-point on the prediates L, whih auses exeution

times for alls to these prediates to be aumulated, and turns pro�l-

ing on. L is either a term Pred/Arity, where Pred is a prediate symbol

and Arity its arity, or a set of suh terms represented as a list. L must

be instantiated, and the prediates spei�ed in it de�ned, at the time

of the all to time/1.

noount(L) Deletes the ount-point on the prediates L. L is either a term

Pred/Arity, where Pred is a prediate symbol and Arity its arity, or a

set of suh terms represented as a list. L must be instantiated, and the

prediates spei�ed in it de�ned, at the time of the all to noount/1.

notime(L) Deletes the time-point on the prediates L. L is either a term

Pred/Arity, where Pred is a prediate symbol and Arity its arity, or a

63

set of suh terms represented as a list. L must be instantiated, and the

prediates spei�ed in it de�ned, at the time of the all to time/1.

pro�ling Displays information about whether pro�le mode is on or not, and

lists prediates that have ount- and time-points set on them.

prof reset(L) Resets all ounts and/or exeution times for the prediates

L. L is either a term Pred/Arity, where Pred is a prediate symbol and

Arity its arity, or a set of suh terms represented as a list. L must be

instantiated, and the prediates spei�ed in it de�ned, at the time of

the all to prof reset/1.

resetount(L) Resets all ounts for the prediates L. L is either a term

Pred/Arity, where Pred is a prediate symbol and Arity its arity, or a

set of suh terms represented as a list. L must be instantiated, and the

prediates spei�ed in it de�ned, at the time of the all to resetount/1.

resettime(L) Resets exeution times for the prediates L. L is either a

term Pred/Arity, where Pred is a prediate symbol and Arity its arity,

or a set of suh terms represented as a list. L must be instantiated,

and the prediates spei�ed in it de�ned, at the time of the all to

resettime/1.

pro�le Turns pro�ling on. This auses subsequent exeution of prediates

with ount- or time-points to be pro�led, and is a no-op if there are no

suh prediates. The prediates ount/1 and time/1 ause pro�ling to

be turned on automatially.

nopro�le Turns pro�ling o�. This auses ount- and time-points to be

ignored.

timepreds(L) Uni�es L to a list of terms P=N where the prediate P of

arity N has a time point set on it.

ountpreds(L) Uni�es L to a list of terms P=N where the prediate P of

arity N has a ount point set on it.

prof stats Causes the all ounts and/or exeution times aumulated sine

the last all to prof stats/0 to be printed out for prediates that are

being pro�led. The exeution times are given as frations of the total

time elapsed sine the last time pro�ling was turned on, or the last time

prof stats was alled, whihever was most reent. This also results in

64

the all ounts and relative exeution times of these prediates being

reset to 0. Equivalent to prof stats(1).

prof stats(N) Causes the all ounts and/or exeution times aumulated

sine the last all to prof stats/0 to be printed out for prediates that

are being pro�led. The exeution times are given as frations of the

total time elapsed sine the last time pro�ling was turned on, or the

last time prof stats was alled, whihever was most reent. If N is 1,

then this also results in the all ounts and exeution times of these

prediates being reset to 0; otherwise, the all ounts and exeution

times are not reset.

14 Other Library Utilities

The SB-Prolog library ontains various other utilities, some of whih are

listed below.

$append(X, Y , Z) Sueeds if list Z is the onatenation of lists X and

Y .

$member(X, L) Cheks whether X uni�es with any element of list L, su-

eeding more than one if there are multiple suh elements.

$memberhk(X, L) Similar to $member/2, exept that $memberhk/2 is

deterministi, i.e. does not sueed more than one for any all.

$reverse(L, R) Sueeds if R is the reverse of list L. If L is not a fully

determined list, i.e. if the tail of L is a variable, this prediate an

sueed arbitrarily many times.

$merge(X, Y , Z) Sueeds if Z is the list resulting from \merging" lists

X and Y , i.e. the elements of X together with any element of Y not

ourring in X. If X or Y ontain dupliates, Z may also ontain

dupliates.

$absmember(X, L) Similar to $member/2, exept that it heks for iden-

tity (through ==/2) rather than uni�ability (through =/2) of X with

elements of L.

$nthmember(X, L, N) Sueeds if the N

th
element of the list L uni�es

with X. Fails if N is greater than the length of L. Either X and L, or

L and N , should be instantiated at the time of the all.

65

$member2(X, L) Cheks whether X uni�es with any of the atual ele-

ments of L. The only di�erene between this and $member/2 is on lists

with a variable tail, e.g. [a, b, | _ ℄: while $member/2 would in-

sert X at the end of suh a list if it did not �nd it, $member2/2 only

heks for membership but does not insert it into the list if it is not

there.

length(L, N) Sueeds if the length of the list L is N . This prediate

is deterministi if L is instantiated to a list of de�nite length, but is

nondeterministi if L is a variable or has a variable tail.

subsumes(X, Y) Sueeds if the term X subsumes the term Y (i.e. if Y is

an instane of X).

15 CREDITS

The initial development of SB-Prolog, from 1984 to August 1986, was at

SUNY at Stony Brook, where Versions 1.0 and 2.0 were developed. Sine

August 1986, its development has ontinued at the University of Arizona,

Tuson.

A large number of people were involved, at some time or another, with

the Logi Programming group at SUNY, Stony Brook, and deserve redit

for helping to bring SB-Prolog to its present form. David Sott Warren led

the projet at Stony Brook. Most of the simulator and builtins were written

by Jiyang Xu and David S. Warren (I added the later stu�, Versions 2.1

onwards). Muh of the library was also by David, with some ontributions

from me. Weidong Chen did the work on lause indexing. Suzanne Dietrih

wrote the Extension Table pakage. I wrote most of the ompiler.

Several people helped debug previous versions, inluding Leslie Rohde;

Bob Bek of Sequent Computers; and Mark Gooley of the University of

Illinois at Urbana-Champaign.

Speial thanks are due to Rihard O'Keefe, who ontributed the Prolog

ode for the parser (in the form of the prediates read/1 and read/2), the

C ode for the tokenizer, and the ode for setof/3 and bagof/3.

I am grateful to Fernando Pereira for permission to use material from

the C-Prolog manual for the desriptions of Prolog syntax and many of the

builtins in this User Manual. Steve Kelem produed the LateX version of

this manual from an earlier tro� version.

| S.K.D.

66

Index

!/0, 18, 26, 28, 58, 60, 61, 76

< =2, 24

=< =2, 24

= n = =2, 24

> =2, 24

>=/2, 24

n=/2, 25

n == =2, 30

^, 29

^=2, 29

,/2, 25

-> =2, 26

:{/1, 11, 16, 57

::{/2, 56

;/2, 25

=../2, 27

=/2, 25

=:=/2, 24

==/2, 30

?=/2, 25

< =2, 30

=< =2, 31

> =2, 30

>= =2, 31

$absmember/2, 65

$allo bu�/5, 42

$append/3, 65

$asm/3, 52

$assertf allo t, 43

$urrent atom/2, 36

$urrent funtor/3, 36

$urrent prediate/3, 37

$db add lref/7, 43

$db assert fat/5, 43

$db all prref/2, 44

$db all prref s/2, 44

$db get lauses/3, 44

$db new prref/3, 43

$exists/1, 21

$getenv/2, 38

$member/2, 65

$member2/2, 66

$memberhk/2, 65

$merge/3, 65

$nthmember/3, 65

$reverse/2, 65

$trae/0, 47

$untrae/0, 47

$interrupt/2, 49

`C'/3, 62

abolish

/1, 35

/2, 35

abort

trae faility, 45

abort/0, 38, 38

allo heap/2, 32

allo perm/2, 32

arg/3, 27, 77

arguments

proessing all from a term, 77

arithmeti, 22

assembler

options, 52

assembly, 52

assert, 33

/1, 33

/2, 33

/4, 34

assert union/2, 33

asserta

67

/1, 33

/2, 33

asserti/2, 33

assertz

/1, 33

/2, 33

atom/1, 26

atomi/1, 27

atoms, 11

baktrak points, 75

bagof/3, 29

behaviour, standard exeution, 18

break/0, 38

bu�ers, 31

builtins, adding, 79

byte ode

�les, 5{8, 11, 47, 52

ompiler, 50

onatenating, 9, 50

loading, 9

overwriting trae points, 45

translator, 7

all/1, 28

all ref

/2, 42

/3, 42

harater I/O, 22

lause, 17

/2, 34

/3, 35

mplib, 7, 50

ompare/3, 31

omparison of terms, 30

ompile

/1, 8

/2, 8

/3, 8

/4, 8

Compiler, 50

diretives, 52

invoking, 50

options, 51

ompiling programs, 8

onlength/2, 28, 32

onstants, 11

onsult, 8, 10

/1, 10

/2, 10

options, 10

onsulting programs, 10

ontrol, extra, 26

ount/1, 63

ountpreds/1, 64

putime/1, 38

Credits, 66

urrent atom/1, 36

urrent funtor/2, 36

urrent prediate/2, 37

ut, 18, 26, 28, 58, 60{61, 76

uts and If-Then-Else, 18

database, internal, 35

dg/2, 61

debug/0, 46

debugging, 44

/0, 46

delarations

mode, 52

de�nite lause grammars, 60

de�nitions

maros, 56

diretives

Compiler, 52

indexing, 54

diretories, system, 7

display/1, 21

68

dynami loader searh path, 6

eÆieny, oding for, 75

environmental prediates, 38

erase/1, 36

et/1, 59

et answers/2, 60

et alls/2, 60

et points/1, 59

et remove/1, 60

et star/1, 59

eval/2, 24

evaluable prediates, 19, 72

exeuting programs, 8

exeution behaviour, standard, 18

exeution diretives, 11

exotia, 42

exp/2, 25

expand term/2, 62

extension tables

memo relations, 57

fail/0, 26

�le handling, 20

�ndall/3, 29

oat/1, 27

oat/3, 24

oating point numbers, uni�ation

of, 19

oor/2, 24

funtor/3, 27

gennum/1, 41

gensym/2, 42

get/1, 22

get0/1, 22

getting started, 6

global values, 41

globalset/1, 41

grammars

de�nite lause, 60

high-level traing, 44

I/O

term, 21

If-Then-Else and uts, 18

index/3, 33, 54

indexing, 34

diretives, 54

on oating point, 19

input, 20

instane/2, 36

integer/1, 26

integers, 11

internal database, 35

interrupts, 49

invoking the Compiler, 50

invoking the simulator, 7, 47

is/2, 24

is bu�er/1, 27

keysort/2, 31

length/2, 66

libraries, 54

linking, dynami searh path, 6

listing

/0, 36

/1, 36

load/1, 9

loader, dynami searh path, 6

loading byte ode �les, 9

low-level prediates, 42

low-level traing, 47

Maro Expander options, 57

maros, 55

de�nition of, 56

memo relations

69

extension tables, 57

meta-logial prediates, 26

mode

delarations, 52

values, 53

mode/3, 53

modi�ation of the program, 32

name/2, 28

nl/0, 22

noount/1, 63

nodebug/0, 46

nodynload/2, 39

noet/1, 60

nonvar/1, 26

nopro�le/0, 64

nospy/1, 46

not uni�able, see n=/2

not/1, 26

notime/1, 63

number/1, 27

ours hek

uni�ation without, 18

op/3, 15, 38

operational semantis, 18

operators, 14

options

Compiler, 51

Maro Expander, 57

Simulator, 48

output, 20

path, searh, 6

phrase/2, 61

portray lause/2, 22

portray term/2, 22

prediate property/2, 37

prediates

evaluable, 72

prediates, environmental, 38

prediates, evaluable, 19

prediates, low-level, 42

prediates, meta-logial, 26

print/1, 21

print al/2, 22

print ar/2, 22

prof reset/1, 64

prof stats

/0, 64

/1, 65

pro�le/0, 64

pro�ling programs, 62

pro�ling/0, 64

program, state of, 36

put/1, 22

query, 17

query evaluator, 7, 47

read/1, 21

real/1, 26

reonsult, 10

reorda/3, 35

reorded/3, 35

reordz/3, 35

registers

minimizing data movement be-

tween, 77

repeat/0, 26

resetount/1, 64

resettime/1, 64

restore/1, 38

retrat/1, 35

rounding, 23

rule, 17

save/1, 38

searh path, 6

see/1, 20

70

seeing/1, 20

seen/0, 20

semantis, operational, 18

setof/3, 29

sets, 29

SIMPATH, 6, 9

Simulator, 47

options, 48

simulator, invoking, 7, 47

sin/2, 25

sort/2, 31

spy/1, 46

spypreds/1, 47

square/2, 25

standard exeution behaviour, 18

starting, 6

state of the program, 36

statistis

/0, 39

/2, 39

strings, 13

struture/1, 27

subsumes/2, 66

symtype/2, 40

syntax, 11

sysall/3, 40

system diretories, 7

system/1, 40

tab/1, 22

tell/1, 21

telling/1, 21

term

proessing all arguments of, 77

term I/O, 21

term expansion/2, 62

terms, 11

omparison of, 30

testing uni�ability, 78

time/1, 63

timepreds/1, 64

told/0, 21

trae

options, 45

trae/1, 44

traepreds/1, 46

traing

high-level, 44

low-level, 47

trimbu�/3, 32

true/0, 25

unde�ned pred/1, 8

uni�ability

testing, 78

uni�ation

oating point numbers, 19

without ours hek, 18

Unix

system alls, 40

untrae/1, 46

var/1, 26

WAM, 5, 19, 49, 52

write/1, 21

writename/1, 21

writeq/1, 21

writeqname/1, 21

71

A Evaluable Prediates of SB-Prolog

An entry of \B" indiates a builtin prediate, \I" an inline prediate, and \L"

a library prediate. A \P" indiates that the prediate is handled by the pre-

proessor during ompilation and/or onsulting. A \D" denotes a ompiler

diretive.

!/0 (P), 26

< =2 (I), 24

=< =2 (I), 24

= n = =2 (I), 24

> =2 (I), 24

>=/2 (I), 24

n =/2 (I), 25

n == =2 (B), 30

^=2 (L), 29

,/2 (I), 25

-> =2 (P), 26

:{/1 (P), 11

::{/2 (P), 56

;/2 (I), 25

=../2 (L), 27

=/2 (I), 25

=:=/2 (I), 24

==/2 (B), 30

?=/2 (I), 25

< =2 (B), 30

=< =2 (B), 31

> =2 (B), 30

>= =2 (B), 31

$absmember/2 (L), 65

$allo bu�/5 (L), 42

$append/3 (L), 65

$asm/3, 52

$assertf allo t (L), 43

$urrent atom/2 (L), 36

$urrent funtor/3 (L), 36

$urrent prediate/3 (L), 37

$db add lref/7 (L), 43

$db assert fat/5 (L), 43

$db all prref/2 (L), 44

$db all prref s/2 (L), 44

$db get lauses/3 (L), 44

$db new prref/3 (L), 43

$exists/1 (B), 21

$getenv/2 (L), 38

$member/2 (L), 65

$member2/2 (L), 66

$memberhk/2 (L), 65

$merge/3 (L), 65

$nthmember/3 (L), 65

$reverse/2 (L), 65

$trae/0 (L), 47

$untrae/0 (L), 47

$interrupt/2 (L), 49

`C'/3 (L), 62

abolish/1 (L), 35

abolish/2 (L), 35

abort/0 (B), 38

allo heap/2 (L), 32

allo perm/2 (L), 32

arg/3 (I), 27

assert/1 (L), 33

assert/2 (L), 33

assert/4 (L), 34

assert union/2 (L), 33

asserta/1 (L), 33

asserta/2 (L), 33

asserti/2 (L), 33

assertz/1 (L), 33

assertz/2 (L), 33

atom/1 (B), 26

72

atomi/1 (B), 27

bagof/3 (L), 29

break/0 (L), 38

all/1 (P), 28

all ref/2 (L), 42

all ref/3 (L), 42

lause/2 (L), 34

lause/3 (L), 35

ompare/3 (B), 31

ompile/1 (L), 8

ompile/2 (L), 8

ompile/3 (L), 8

ompile/4 (L), 8

onlength/2 (B), 28

onlength/2 (L), 32

onsult/1 (L), 10

onsult/2 (L), 10

ount/1 (L), 63

ountpreds/1 (L), 64

putime/1 (B), 38

urrent atom/1 (L), 36

urrent funtor/2 (L), 36

urrent prediate/2 (L), 37

dg/2 (L), 61

debug/0 (L), 46

debugging/0 (L), 46

display/1 (L), 21

erase/1 (L), 36

et/1 (L), 59

et answers/2 (L), 60

et alls/2 (L), 60

et points/1 (L), 59

et remove/1 (L), 60

et star/1 (L), 59

eval/2 (L), 24

exp/2 (B), 25

expand term/2 (L), 62

fail/0 (I), 26

�ndall/3 (L), 29

oat/1 (I), 27

oat/3 (B), 24

oor/2 (B), 24

funtor/3 (L), 27

gennum/1 (L), 41

gensym/2 (L), 42

get/1 (B), 22

get0/1 (B), 22

globalset/1 (L), 41

index/3 (D), 54

instane/2 (L), 36

integer/1 (I), 26

is/2 (L), 24

is bu�er/1 (B), 27

keysort/2 (L), 31

length/2 (L), 66

listing/0 (L), 36

listing/1 (L), 36

load/1 (B), 9

mode/3 (D), 53

name/2 (B), 28

nl/0 (B), 22

noount/1 (L), 63

nodebug/0 (L), 46

nodynload/2 (L), 39

noet/1 (L), 60

nonvar/1 (I), 26

nopro�le/0 (L), 64

nospy/1 (L), 46

not/1 (P), 26

notime/1 (L), 63

73

number/1 (B), 27

op/3 (L), 15, 38

phrase/2 (L), 61

portray lause/2 (L), 22

portray term/2 (L), 22

prediate property/2 (L), 37

print/1 (L), 21

print al/2 (L), 22

print ar/2 (L), 22

prof reset/1 (L), 64

prof stats/0 (L), 64

prof stats/1 (L), 65

pro�le/0 (L), 64

pro�ling/0 (L), 64

put/1 (B), 22

read/1 (B), 21

real/1 (I), 26

reorda/3 (L), 35

reorded/3 (L), 35

reordz/3 (L), 35

repeat/0 (L), 26

resetount/1 (L), 64

resettime/1 (L), 64

restore/1 (B), 38

retrat/1 (L), 35

save/1 (B), 38

see/1 (B), 20

seeing/1 (B), 20

seen/0 (B), 20

setof/3 (L), 29

sin/2 (B), 25

sort/2 (L), 31

spy/1 (L), 46

spypreds/1 (L), 47

square/2 (B), 25

statistis/0 (B), 39

statistis/2 (L), 39

struture/1 (B), 27

subsumes/2 (L), 66

symtype/2 (B), 40

sysall/3 (B), 40

system/1 (B), 40

tab/1 (B), 22

tell/1 (B), 21

telling/1 (B), 21

term expansion/2 (U), 62

time/1 (L), 63

timepreds/1 (L), 64

told/0 (B), 21

trae/1 (L), 44

traepreds/1 (L), 46

trimbu�/3 (L), 32

true/0 (I), 25

unde�ned pred/1 (L), 8

untrae/1 (L), 46

var/1 (I), 26

write/1 (L), 21

writename/1 (B), 21

writeq/1 (L), 21

writeqname/1 (B), 21

74

B A Note on Coding for EÆieny

The SB-Prolog system tends to favour programs that are relatively pure.

Thus, for example, asserts tend to be quite expensive, enouraging the user

to avoid them if possible. This setion points out some syntati onstruts

that lead to the generation of eÆient ode. These involve (i) avoiding the

reation of baktrak points; and (ii) minimizing data movement between

registers. Optimization of logi programs is an area of ongoing researh, and

we expet to enhane the apabilities of the system further in future versions.

B.1 Avoiding Creation of Backtrack Points

Sine the reation of baktrak points is relatively expensive, program ef-

�ieny may be improved substantially by using onstruts that avoid the

reation of baktrak points where possible. The SB-Prolog ompiler reog-

nizes onditionals involving ertain omplementary inline tests, and gen-

erates ode that does not reate hoie points for suh ases. Two in-

line tests p(t1; : : : ; tn) and q(t1; : : : ; tn) are omplementary if and only if

p(t1;: : : ; tn) � not(q(t1; : : : ; tn)). For example, the literals `X > Y ' and

`X =< Y ' are omplementary. At this point, omplementary tests are

reognized as suh only if their argument tuples are idential. The inline

prediates that are treated in this manner, with their orresponding omple-

mentary literals, are shown in Table B.1. The syntati onstruts reognized

Inline Test Complementary Test

> =2 =< =2

=< =2 > =2

>= =2 < =2

< =2 >= =2

=:=/2 = n = =2

= n = =2 =:=/2

?=/2 n = =2

n = =2 ?=/2

var/1 nonvar/1

nonvar/1 var/1

Table 5: Complementary Tests Reognized by the Compiler

are:

75

(i) Disjunts of the form

head(: : :): �(test(t1; : : : ; tn); : : :); (not(test(t1; : : : ; tn); : : :)):

or

head(: : :): �(test(t1; : : : ; tn); : : :); ((omp test(t1; : : : ; tn); : : :)):

where test is one of the inline tests in the table above, and omp test

the orresponding omplementary test (note that the arguments to test

and omp test have to be idential).

(ii) Conditionals of the form

head: �(test1; : : : ; testn)� > True Case;False Case:

or

head: �(test1; : : : ; testn)� > True Case;False Case:

where eah testi is an inline test, as mentioned in the table above.

The ode generated for these ases involves a test and onditional branh,

and no hoie point is reated. We expet future versions of the translator

to reognize a wider lass of omplementary tests.

Notie that this disourages the use of expliit uts. For example, whereas

a hoie point will be reated for

part(M,[E|L℄,U1,U2) :-

((E =< M, !, U1 = [E|U1a℄, U2 = U2a) ;

(U1 = U1a, U2 = [E|U2a℄)),

part(M,L,U1a,U2a).

no hoie point will be reated for either

part(M,[E|L℄,U1,U2) :-

(E =< M -->

(U1 = [E|U1a℄, U2 = U2a) ;

(U1 = U1a, U2 = [E|U2a℄)),

part(M,L,U1a,U2a).

76

or

part(M,[E|L℄,U1,U2) :-

((E =< M, U1 = [E|U1a℄, U2 = U2a) ;

(E > M, U1 = U1a, U2 = [E|U2a℄)),

part(M,L,U1a,U2a).

Thus, either of the two later versions will be more eÆient than the

version with the expliit ut (this is a design deision we have onsiously

made, in the hope of disouraging blatantly non-delarative ode where eÆ-

ient delarative ode an be written).

B.2 Minimizing Data Movement Between Registers

Data movement between registers for parameter passing may be minimized

by leaving variables in the same argument position wherever possible. Thus,

the lause

p(X,Y) :- p1(X,Y,0).

is preferable to

p(X,Y) :- p1(0,X,Y).

beause the �rst de�nition leaves the variables X and Y in the same argu-

ment positions (�rst and seond, respetively), while the seond de�nition

does not.

B.3 Processing All Arguments of a Term

It is often the ase that we wish to proess eah of the arguments of a term in

turn. For example, to deide whether a ompound term is ground, we have

to hek that eah of its arguments is ground. One possibility is to reate a

list of those arguments, and traverse the list proessing eah element. Using

this approah, a prediate to hek for groundness would be

ground(T) :- atomi(T).

ground(T) :- struture(T), T =.. [| Args℄, groundargs(Args).

groundargs([℄).

groundargs([A | ARest℄) :-- ground(A), groundargs(ARest).

This is not the most eÆient way to proess all the arguments of a term,

beause it involves the reation of intermediate lists, whih is expensive both

in spae and time. A muh better alternative is to use arg/3 to index into the

77

term and retrieve arguments. Using this approah, the ground/1 prediate

above would be written as

ground(T) :- atomi(T).

ground(T) :- struture(T), funtor(T, P, N), groundargs(1, N, T).

groundargs(M, N, T) :-

M =< N ->

(arg(M, T, A), ground(A), M1 is M + 1, groundargs(M1, N, T)) ;

true.

The seond approah is likely to be more eÆient than the �rst in SB-Prolog.

If the arguments of the term do not need to be proessed in asending

order, then it is more eÆient to proess them in desending order using

arg/3 to aess them. For example, the prediate for groundness heking

ould be written as

ground(T) :- atomi(T).

ground(T) :- struture(T), funtor(T, P, N), groundargs(N, T).

groundargs(M, T) :-

M =:= 0 ->

true ;

(arg(M, T, A), ground(A), M1 is M - 1, groundargs(M1, T)).

This is even more eÆient than the earlier version, beause (i) groundargs

needs to have one fewer parameter to be passed to it at eah iteration; and

(ii) testing \M =:= 0" is simpler and more eÆient than heking \M =<

N", and takes fewer mahine instrutions.

B.4 Testing Unifiability

Often, it is neessary to hek whether or not a term has a partiular value.

If we know that the term will be bound to a number, we an use the evaluable

prediates =:=/2 or = n = =2, as explained earlier. For other values, it may

often be heaper, in the appropriate irumstanes, to use the prediates

?=/2 or n = =2. For example, onsider a prediate p/2 that alls q/1 with

its seond argument if its �rst argument uni�es with a, and r/1 otherwise.

A na��ve de�nition might be

p(a, X) :- !, q(X).

p(Y, X) :- r(X).

However, the all to p/2 results in the (temporary) reation of a baktrak

point. A solution that avoids this baktrak point reation is

p(Y, X) :- Y ?= a -> q(X) ; r(X).

78

Of ourse, if the argument order in p/2 ould be reversed in this ase, then

data movement would be redued even further (see above), and the ode

would be even more eÆient:

p(X, Y) :- Y ?= a -> q(X) ; r(X).

C Adding Builtins to SB-Prolog

Adding a builtin involves writing the C ode for the desired ase and in-

stalling it into the simulator. The �les in the diretory sim/builtin ontain

the C ode for the builtin prediates supported by the system. The following

proedure is to be followed when adding a builtin to the system:

1. Installing C Code:

(a) Go to the diretory sim/builtin.

(b) Look at the#de�nes in the �le builtin.h, and hoose a number

N1 (between 0 and 255) whih is not in use to be the builtin

number for the new builtin.

() Add to the �le builtin.h the line

#define NEWBUILTIN N1

(d) The onvention is that the ode for builtin will be in a parameter-

less proedure named b NEWBUILTIN. Modify the �le init branh.

in the diretory sim/builtin by adding these lines:

extern int b NEWBUILTIN();

and

set b inst (NEWBUILTIN, b NEWBUILTIN);

in the appropriate plaes.

(e) The builtins are ompiled together into one objet �le, builtin.

Update the �le Makefile by appending the name of your objet

ode �le at the end of the line \OBJS = : : :" and insert the ap-

propriate ommands to ompile your C soure �le, e.g.:

OBJS = [: : : other file names : : : ℄ newbuiltin.o

.

.

.

newbuiltin.o: $(HS)

 $(CFLAGS) newbuiltin.

79

(f) Exeute the updated make �le to reate an updated objet �le

builtin.

(g) Go to the diretory sim and exeute make to install the new �le

builtin.

2. Installing Prolog Code:

Assume that the builtin prediate to be added is newbuiltin/4. The

proedure for installing the Prolog ode for this is as follows:

(a) Go to the SB-Prolog system diretory lib/sr, where the Prolog

soure for the library routines is kept.

(b) Eah builtin de�nition is of the form

pred(: : :) :- ' $builtin'(N).

where N is an integer, the builtin number of pred.

() Create a Prolog soure �le newbuiltin.P (notie orrespondene

with the name of the prediate being de�ned) ontaining the def-

inition

newbuiltin(A,B,C,D) :-- ' $builtin'(N1).

where N1 is the builtin number of the prediate newbuiltin, ob-

tained when installing the C ode for the builtin (see above).

(d) Compile this Prolog prediate, using the simulator and the om-

pile prediate, into a �le newbuiltin (notie orrespondene with

the name of the prediate being de�ned) in the SB-Prolog dire-

tory lib.

80

