The SB-Prolog System, Version 3.0

A User Manual

edited by
Saumya K. Debray

from material by

David Scott Warren
Suzanne Dietrich
SUNY at Stony Brook

Fernando Pereira
SRI International

Department of Computer Science
University of Arizona
Tucson, AZ 85721

September 1988

Contents

1

2

Introduction

Getting Started

2.1 The Dynamic Loader Search Path
2.2 System Directories
2.3 Invoking the Simulator
2.4 Executing Programs
24.1 Compiling Programs
24.2 Loading Byte Code Files
2.4.3 Consulting Programs
2.5 Execution Directives
Syntax
3.1 Terms
3.2 Operators
3.3 Clause? e
34 Rule?
3.5 Query?. . .o
SB-Prolog: Operational Semantics
4.1 Standard Execution Behaviour
4.2 Cuts and If-Then-Else
4.3 Unification of Floating Point Numbers
Evaluable Predicates
5.1 Input and Output
5.1.1 File Handling
512 Term I/O
5.1.3 Character I/O
5.2 Arithmetic
5.3 Convenience
54 Extra Control L
5.5 Meta-Logical
5.6 Sets
5.7 Comparison of Terms
5.8 Buffers
5.9 Modification of the Program

(934

—_
— O ©W oo~~~

[a—y

11
14
17
17
17

18
18
18
19

5.10 Internal Database,
5.11 Information about the State of the Program
5.12 Environmental
513 Global Values
5.14 Exoticao

6 Debugging
6.1 High-Level Tracing
6.2 Low-Level Tracing

7 The Simulator
7.1 Invoking the Simulator
7.2 Simulator Options
7.3 Interrupts

8 The Compiler
8.1 Invoking the Compiler
8.2 Compiler Options
83 Assembly
8.4 Compiler Directives L.
8.4.1 Mode Declarations
8.4.2 Indexing Directives

9 Libraries

10 Macros
10.1 Defining Macros oo
10.2 Macro Expander Options

11 Extension Tables: Memo Relations
12 Definite Clause Grammars

13 Profiling Programs

14 Other Library Utilities

15 CREDITS

A Evaluable Predicates of SB-Prolog

44
44
47

47
47
48
49

50
20
51
92
52
22
o4

54

55
26
o7

57

60

62

65

66

72

B A Note on Coding for Efficiency 75

B.1 Avoiding Creation of Backtrack Points 75
B.2 Minimizing Data Movement Between Registers 7
B.3 Processing All Arguments of a Term 7
B.4 Testing Unifiability 78
C Adding Builtins to SB-Prolog 79

List of Figures

1 Structure for the Function .(1,.(2,.(3,[1))) 13
2 Structures for the Functions [X|L] and [a,b|L 14
3 Extension Table Example o8

List of Tables

1 Operator Priorities 16
2 Inline Predicates of SB-Prolog 20
3 Run Time Statistics Predicates 39
4 Syscall Numbers for Some Unix Systems Calls 41
5 Complementary Tests Recognized by the Compiler 75

Abstract

SB-Prolog is a Prolog system for Unix'-based systems. The core
of the system is an emulator, written in C for portability, of a Prolog
virtual machine that is an extension of the Warren Abstract Machine.
The remainder of the system, including the translator from Prolog to
the virtual machine instructions, is written in Prolog. Parts of this
manual, specifically the sections on Prolog syntax and descriptions
of some of the builtins, are based on the C-Prolog User Manual by
Fernando Pereira.

1 Introduction

SB-Prolog is a Prolog system based on an extension of the Warren Abstract
Machine?. The WAM simulator is written in C to enhance portability. Prolog
source programs can be compiled into byte code files, which contain encodings
of WAM instructions and are interpreted by the simulator. Programs can
also be interpreted via consult.

SB-Prolog offers several features that are not found on most Prolog sys-
tems currently available. These include: compilation to object files; dynamic
loading of predicates; provision for generating executable code on the global
stack, which can be later be reclaimed; an eztension table facility that per-
mits memoization of relations. Other features include full integration be-
tween compiled and interpreted code, and a facility for the definition and
expansion of macros that is fully compatible with the runtime system.

The system incorporates tail recursion optimization, and performs clause
indexing in both compiled and interpreted code. However, there is no garbage
collector for the global stack. This may be incorporated into a later version.

One of the few luxuries afforded to a person giving software away for free
is the ability to take philosophical stances without hurting his wallet. Based
on our faith in the “declarative ideal”, viz. that pure programs with declar-
ative readings are Good, we have attempted to encourage, where possible,
a more declarative style of programming. To this end, we have deliberately
chosen to not reward programs containing cuts in some situations where
more declarative code is possible (see Appendix B). We have also resisted
the temptation to make assert less expensive. We hope this will help promote
a better programming style.

!Unix is a trademark of AT&T.
2D. H. D. Warren, “An Abstract Prolog Instruction Set”, Tech. Note 309, SRI Inter-
national, 1983.

2 Getting Started

This section is intended to give a broad overview of the SB-Prolog system,
so as to enable the new user to begin using the system with a minimum of
delay. Many of the topics touched on here are covered in greater depth in
later sections.

2.1 The Dynamic Loader Search Path

In SB-Prolog, it is not necessary for the user to load all the predicates nec-
essary to execute a program. Instead, if an undefined predicate foo is en-
countered during execution, the system searches the user’s directories in the
order specified by the environment variable SIMPATH until it finds a direc-
tory containing a file foo whose name is that of the undefined predicate.
It then dynamically loads and links the file foo (which is expected to be a
byte code file defining the predicate foo), and continues with execution; if no
such file can be found, an error message is given and execution fails. This
feature makes it unnecessary for the user to have to explicitly link in all
the predicates that might be necessary in a program: instead, only those
files are loaded which are necessary to have the program execute. This can
significantly reduce the memory requirements of programs.

The key to this dynamic search-and-load behaviour is the SIMPATH
environment variable, which specifies the order in which directories are to be
searched. It may be set by adding the following line to the user’s .cshrc file:

setenv SIMPATH path
where path is a sequence of directory names separated by colons:
diry:diry: ... ¢ dir,

and dir; are full path names to the respective directories. For example,
executing the command

setenv SIMPATH .:$HOME/prolog/modlib:$HOME/prolog/lib

sets the search order for undefined predicates to the following: first, the
directory in which the program is executing is searched; if the appropriate
file is not found in this directory, the directories searched are, in order,
/prolog/modlib and ~/prolog/lib. If the appropriate file is not found in
any of these directories, the system gives an error message and execution
fails.

The beginning user is advised to include the system directories (listed in
the next section) in his SIMPATH, in order to be able to access the system
libraries (see below).

2.2 System Directories

There are four basic system directories: cmplib, 1ib, modlib and sim.
cmplib contains the Prolog to byte code translator; 1ib and modlib con-
tain library routines. The src subdirectory in each of these contains the
corresponding Prolog source programs. The directory sim contains the sim-
ulator, the subdirectory builtin contains code for the builtin predicates of
the system.

It is recommended that the beginning user include the system directories
in his SIMPATH, by setting SIMPATH to

.:SBP/modlib:SBP/1ib:SBP/cmplib

where SBP denotes the path to the root of the SB-Prolog system directories.

2.3 Invoking the Simulator
The simulator is invoked by the command
sbprolog be_file where be_file

is a byte code file resulting from the compilation of a Prolog program. In
almost all cases, the user will wish to interact with the SB-Prolog query
evaluator, in which case be_file will be $readloop, and the command will be

sbprolog Path/$readloop

where Path is the path to the directory containing the command interpreter
$readloop. This directory, typically, is modlib (see Section 2.2 above).

The command interpreter reads in a query typed in by the user, evaluates
it and prints the answer(s), repeating this until it encounters an end-of-file
(the standard end-of-file character on the system, e.g. ctrl-D), or the user
types in end_of_file or halt.

The user should ensure that the the directory containing the executable
file sim (typically, the system directory sim: see Section 2.2 above). is
included in the shell variable path; if not, the full path to the simulator will
have to be specified.

In general, the simulator may be invoked with a variety of options, as
follows:

sbprolog -options be_file
or
sbprolog -option, —option, ... —option, bec_file

The options recognized by the simulator are described in Section 4.2.
When called with a byte code file bc_file, the simulator begins execution
with the first clause in that file. The first clause in such a file, therefore,
should be a clause without any arguments in the head (otherwise, the sim-
ulator will attempt to dereference argument pointers in the head that are
really pointing into deep space, and usually come to a sad end). If the user is
executing a file in this manner rather than using the command interpreter, he
should also be careful to include the undefined predicate handler, consisting
of the predicates ‘_$interrupt/2 and ‘_$undefined_pred’ /1, which is normally
defined in the files mod1lib/src/$init_sys.P and modlib/src/$readloop.

2.4 Executing Programs

There are two ways of executing a program: a source file may be compiled
into a byte-code file, which can then be loaded and executed; or, the source
file may be interpreted via consult. The system supports full integration of
compiled and interpreted code, so that some predicates of a program may be
compiled, while others may be interpreted. However, the unit of compilation
or consulting remains the file. The remainder of this section describes each
of these procedures in more detail.

2.4.1 Compiling Programs

The compiler is invoked through the Prolog predicate compile. It translates
Prolog source programs into byte code that can then be executed on the
simulator. The compiler may be invoked as follows:

| ?- compile(InFile [, OutFile] [, OptionsList 1).
or
| ?- compile(InFile, OutFile, OptionsList, PredList).

where optional parameters are enclosed in brackets. InFile is the name
of the input (i.e. source) file; OutFile is the name of the output file (i.e. byte
code) file; OptionsList is a list of compiler options, and PredList is a list of

terms P/N denoting the predicates defined in InFile, where P is a predicate
name and NN its arity.

The input and output file names must be Prolog atoms, i.e. either begin
with a lower case letter and consist only of letters, digits, dollar signs and
underscores; or, be enclosed within single quotes. If the output file name is
not specified, it defaults to InFile.out. The list of options, if specified, is a
Prolog list, i.e. a term of the form

Loption,, option,, ..., option, J.

If left unspecified, it defaults to the empty list [1. PredList, if specified,
is usually given as an uninstantiated variable; its principal use is for setting
trace points on the predicates in the file (see Sections 6 and 8). Notice that
PredList can only appear in compile/4.

A list of compiler options appears in Section 8.2.

2.4.2 Loading Byte Code Files

Byte code files may be loaded into the simulator using the predicate load:
| ?- load(ByteCode File).

where ByteCode_File is a Prolog atom (see Section 3.1) that is the name
of a byte code file.

The load predicate invokes the dynamic loader, which carries out a search
according to the sequence specified by the environment variable SIMPATH (see
Section 2.1). Tt is therefore not necessary to always specify the full path name
to the file to be loaded.

Byte code files may be concatenated together to produce other byte code
files. Thus, for example, if fool and foo2 are byte code files resulting from
the compilation of two Prolog source programs, then the file foo, obtained
by executing the shell command

cat fool foo2 > foo

is a byte code file as well, and may be loaded and executed. In this case,
loading and executing the file foo would give the same result as loading
fool and foo2 separately, which in turn would be the same as concatenating
the original source files and compiling this larger file. This makes it easier
to compile large programs: one need only break them into smaller pieces,
compile the individual pieces, and concatenate the resulting byte code files
together.

2.4.3 Consulting Programs

Instead of compiling a file to generate a byte code file which then has to
be loaded, a program may be executed interpretively by “consulting” the
corresponding source file:

| ?- consult(SourceFile [, OptionList 1).
or
| ?- consult(SourceFile, OptionLlist, PredList).

where SourceFile is a Prolog atom which is the name of a file containing a
Prolog source program; OptionList is a list of options to consult; and PredList
is a list of terms P/N, where P is a predicate name and N its arity, specifying
which predicates have been consulted from SourceFile; its principal use is for
setting trace points on the predicates in the file (see Section 6). Notice that
PredList can only appear in consult/3.

At this point, the options recognized for consult are the following:

t “trace”. Causes a trace point to be set on any predicate in the current file
that does not already have a trace point set.

v “verbose”. Causes information regarding which predicates have been con-
sulted to be printed out. Default: off.

In addition to the above, options for the macro expander are also recog-
nized (see Section 10)).

consult will create an index on the principal functor of the first argument
of the predicates being consulted, unless this is changed using the indez/3
directive. In particular, note that if no index is desired on a predicate foo/n,
then the directive

:= index(foo, n, 0).

should be given.

It is important to note that SB-Prolog’s consult predicate is similar to
that of Quintus Prolog, and behaves like C-Prolog’s reconsult. This means
that if a predicate is defined across two or more files, consulting them will
result in only the clauses in the file consulted last being used.

10

2.5 Execution Directives

Execution directives may be specified to compile and consult through :—/1.
If, in the read phase of compile or consult, a term with principal functor
:—/1 is read in, this term is executed directly via call/1. This enables the
user to dynamically modify the environment, e.g. via op declarations (see
Section 3.2), asserts etc.

A point to note is that if the environment is modified as a result of an
execution directive, the modifications are visible only in that environment.
This means that consulted code, which runs in the environment in which the
source program is read (and which is modified by such execution directives)
feel the effects of such execution directives. However, byte code resulting
from compilation, which, in general, executes in an environment different
from that in which the source was compiled, does not inherit the effects of
such directives. Thus, an op declaration can be used in a source file to change
the syntax and allow the remainder of the program to be parsed according
to the modified syntax; however, these modifications will not, in general,
manifest themselves if the byte code is executed in another environment. Of
course, if the byte code is loaded into the same environment as that in which
the source program was compiled, e.g. through

| ?- compile(foo, bar), load(bar).

the effects of execution directives will continue to be felt.

3 Syntax

3.1 Terms

The syntax of SB-Prolog is by and large compatible with that of C-Prolog.
The data objects of the language are called terms. A term is either a constant,
a variable or a compound term. Constants can be integers or atoms. The
symbol for an atom must begin with a lower case letter or the dollar sign
$, and consist of any number of letters, digits, underscores and dollar signs;
if it contains any character other than these, it must be enclosed within
single quotes.®> As in other programming languages, constants are definite
elementary objects.

3Users are advised against using symbols beginning with ‘¢’ or ‘_$’, however, in order
to minimize the possibility of conflicts with symbols internal to the system.

11

Variables are distinguished by an initial capital letter or by the initial
character “_” for example

X Value A A1 _3 _RESULT _result

If a variable is only referred to once, it does not need to be named and may
be written as an anonymous variable, indicated by the underline character

A variable should be thought of as standing for some definite but uniden-
tified object. A variable is not simply a writable storage location as in most
programming languages; rather it is a local name for some data object, cf.
the variable of pure LISP and constant declarations in Pascal.

The structured data objects of the language are the compound terms.
A compound term comprises a functor (called the principal functor of the
term) and a sequence of one or more terms called arguments. A functor
is characterized by its name, which is an atom, and its arity or number of
arguments. For example the compound term whose functor is named ‘point’
of arity 3, with arguments X, Y and Z, is written

point(X,Y,Z)

An atom is considered to be a functor of arity 0.

A functor or predicate symbol is uniquely identified by its name and arity
(in other words, it is possible for different symbols having different arities
to share the same name). A functor or predicate symbol p with arity n is
usually written p/n.

One may think of a functor as a record type and the arguments of a
compound term as the fields of a record. Compound terms are usefully
pictured as trees. For example, the term

s(np(john),vp(v(likes),np(mary)))

would be pictured as the structure

np vp
john v np

likes mary

12

Sometimes it is convenient to write certain functors as operators — 2-ary
functors may be declared as infiz operators and 1-ary functors as prefiz or
postfix operators. Thus it is possible to write

X+Y (P;Q) X<Y +X P;
as optional alternatives to
+(X,Y) ;(P,Q) <(X,Y) +(X) ;(P)

Operators are described fully in the next section.

Lists form an important class of data structures in Prolog. They are
essentially the same as the lists of LISP: a list either is the atom [], repre-
senting the empty list, or is a compound term with functor ‘.’/2 and two
arguments which are respectively the head and tail of the list. Thus a list
of the first three natural numbers is the structure (shown in Figure 1) which
could be written, using the standard syntax, as .(1,.(2,.(3,[1))), but

/\
1 .
/\
2 .
/\
3 1

Figure 1: Structure for the Function . (1,.(2,.(3,[1)))

which is normally written, in a special list notation, as [1,2,3]. The special
list notation in the case when the tail of a list is a variable is exemplified by

[XIL] [a,b|L]

representing the structures shown in Figure 2 respectively.
Note that this list syntax is only syntactic sugar for terms of the form ‘.’(_,
_) and does not provide any new facilities that were not available otherwise.
For convenience, a further notational variant is allowed for lists of integers
which correspond to ASCII character codes. Lists written in this notation
are called strings. For example, "Prolog" represents exactly the same list
as [80,114,111,108,111,103].

13

/\ /\

/ \
Figure 2: Structures for the Functions [XIL] and [a,b|L

3.2 Operators

Operators in Prolog are simply a notational convenience. For example, the
expression

2 +1

could also be written +(2,1). It should be noticed that this expression
represents the structure

/ 0\
2 1

and not the number 3. The addition would only be performed if the structure
was passed as an argument to an appropriate procedure (such as eval/2 —
see Section 5.2).

The Prolog syntax caters for operators of three main kinds — infiz, prefix
and postfiz. An infix operator appears between its two arguments, while a
prefix operator precedes its single argument and a postfix operator is written
after its single argument.

Each operator has a precedence, which is a number from 1 to 1200. The
precedence is used to disambiguate expressions where the structure of the
term denoted is not made explicit through parenthesization. The general
rule is that the operator with the highest precedence is the principal functor.
Thus if ‘4’ has a higher precedence than ‘/’, then a+b/c and a+(b/c) are
equivalent and denote the term +(a,/(b,c)). Note that the infix form of
the term /(+(a,b),c) must be written with explicit parentheses, (a+b)/c.

If there are two operators in the subexpression having the same highest
precedence, the ambiguity must be resolved from the types of the operators.
The possible types for an infix operator are

xfx xfy yfx

14

With an operator of type ‘xfx’; it is a requirement that both of the two
subexpressions which are the arguments of the operator must be of lower
precedence than the operator itself, i.e. their principal functors must be of
lower precedence, unless the subexpression is explicitly bracketed (which
gives it zero precedence). With an operator of type ‘xfy’; only the first or
left-hand subexpression must be of lower precedence; the second can be of
the same precedence as the main operator; and vice versa for an operator of
type ‘yfx’.

For example, if the operators ‘+’ and ‘—" both have type ‘yfx’ and are
of the same precedence, then the expression “a—b-+c” is valid, and means
“(a-b)+c”, i.e. “+(-(a,b),c)”. Note that the expression would be invalid if
the operators had type ‘xfx’, and would mean “a—(b+c)”, i.e. “~(a,+(b,c))”,
if the types were both ‘xfy’.

The possible types for a prefix operator are

fx fy
and for a postfix operator they are
xf yf

The meaning of the types should be clear by analogy with those for infix
operators. As an example, if ‘not” were declared as a prefix operator of type
‘fy’, then

not not P

would be a permissible way to write not(not(P)). If the type were ‘fx’, the
preceding expression would not be legal, although

not P

would still be a permissible form for not(P).
In SB-Prolog, a functor named name is declared as an operator of type
type and precedence precedence by calling the evaluable predicate op:

| ?- op(precedence, type, name).

The argument name can also be a list of names of operators of the same type
and precedence.

It is possible to have more than one operator of the same name, so long
as they are of different kinds, i.e. infix, prefix or postfix. An operator of any
kind may be redefined by a new declaration of the same kind. This applies

15

—op(1200, xfx, [:,->])

—op(1200, fx, [:]).

—op(1198, «xfx, [:—]).

—op(1150, fy, [mode, public, dynamic |]).

—op(1100, =xfy, [;])-

—op(1050, xfy, [-—>]).

—op(1000, xfy, [’,)]). /* See note below */

—op(900, fy, [mnot, \+, spy, nospy]).

—op(700, xfx, [=,is,=.,==,\ ==, Q< Q> G=<, @>=,

—op(661, xfy, [“7]).

O Op(500, ny, [+ 5 /\7 \/])
—op(500, fx, [+, -]).

—op(400, yfx, [*, /,//, <<, >>])
—op(300, xfx, [mod])

—op(200, xfy, ["].

Table 1: Operator Priorities

equally to operators which are provided as standard in SB-Prolog, namely
the ones shown in Table 1.

Operator declarations are most usefully placed in directives at the top
of your program files. In this case the directive should be a command as
shown above. Another common method of organization is to have one file
just containing commands to declare all the necessary operators. This file is
then always consulted first.

Note that a comma written literally as a punctuation character can be
used as though it were an infix operator of precedence 1000 and type ‘xfy’:

X,y 7,2 (X,Y)

represent the same compound term. But note that a comma written as a
quoted atom is not a standard operator.

Note also that the arguments of a compound term written in standard
syntax must be expressions of precedence below 1000. Thus it is necessary
to parenthesize the expression P :— Q in

assert((P :- Q))
The following syntax restrictions serve to remove potential ambiguity asso-

ciated with prefix operators.

16

e In a term written in standard syntax, the principal functor and its
following (must not be separated by any whitespace. Thus

point (X,Y,Z)

is invalid syntax (unless point were declared as a prefix operator).

e If the argument of a prefix operator starts with a (, this (must be
separated from the operator by at least one space or other non-printable
character. Thus

:-(p;a),r.
(where : == is the prefix operator) is invalid syntax, and must be written
as

- (psq,r.

e If a prefix operator is written without an argument, as an ordinary
atom, the atom is treated as an expression of the same precedence as
the prefix operator, and must therefore be bracketed where necessary.
Thus the brackets are necessary in

X = (?-)

3.3 Clause?

The syntax of a clause is as follows. What the hell IS the syntax for a clause?

3.4 Rule?
The syntax of a rule is as follows. What the hell IS the syntax for a rule?

3.5 Query?
The syntax of a query is as follows. What the hell IS the syntax for a query?

17

4 SB-Prolog: Operational Semantics

4.1 Standard Execution Behaviour

The normal execution behaviour of SB-Prolog follows the usual left to right
order of literals within a clause, and the textual top to bottom order of clauses
for a predicate. This corresponds to a depth first search of the leftmost
SLD-tree for the program and the given query. Unification without occurs
check is used, and execution backtracks to the most recent choice point when
unification fails.

4.2 Cuts and If-Then-Else

This standard execution behaviour of SB-Prolog can be changed using con-
structs like cut (') and if-then-else (=>). In SB-Prolog, cuts are usually
treated as hard, i.e. discard choice points of all the literals to the left of the
cut in the clause containing the cut being executed, and also the choice point
for the parent predicate, i.e. any remaining clauses for the predicate contain-
ing the cut being executed. There are some situations, however, where the
scope of a cut is restricted to be smaller than this. Restrictions apply under
the following conditions:

1. The cut occurs in a term which has been constructed at runtime and
called through call/1, e.g. in

o X o= (p(n), Y, q(¥)), ..., call(X),

In this case, the scope of the cut is restricted to be within the call,
unless one of the following cases also apply and serve to restrict its
scope further.

2. The cut occurs in a negated goal, or within the scope of the test
of an if-then-else (in an if-then-else of the form Test -> TruePart;
FalsePart, the test is the goal Test). In these cases, the scope of the
cut is restricted to be within the negation or the test of the if-then-else,
respectively.

In cases involving nested occurrences of these situations, the scope of
the cut is restricted to that for the deepest such nested construct, i.e. most
restricted. For example, in the construct

18

.., not ((p(X) -> not((q(X), (r(X) -> s(X) ; (X)), !,
u(X)))))),

the scope of the cut is restricted to the inner negation, and does not affect
any choice point that may have been set up for p(X).

4.3 Unification of Floating Point Numbers

As far as unification is concerned, no type distinction is made between inte-
gers and floating point numbers, and no explicit type conversion is necessary
when unifying an integer with a float. However, due to the finite precision
representation of floating point numbers and cumulative round-off errors in
floating point arithmetic, comparisons involving floating point numbers may
not always give the expected results. An effort is made to minimize surprises
by considering two numbers z and y (at least one of which is a float) to be
unifiable if (||z| — |lyl|)/ min(||z||, |ly|]) to be less than 10~°. However, this
does not guarantee immunity against round-off errors. For the same reason,
users are warned that indexing on predicate arguments (see Section 8.4.2)
may not give the expected results if floating point numbers are involved.

5 Evaluable Predicates

This section describes (most of) the evaluable predicates provided by SB-
Prolog. These can be divided into three classes: inline predicates, builtin
predicates and library predicates.

Inline predicates represent “primitive” operations in the WAM. Calls to
inline predicates are compiled into a sequence of WAM instructions in-line,
i.e. without actually making a call to the predicate. Thus, for example, re-
lational predicates (> /2, >= /2, etc.) compile to, essentially, a subtraction
and a conditional branch. Inline predicates cannot be redefined by the user.
Table 2 lists the SB-Prolog inline predicates.

Unlike inline predicates, builtin predicates are implemented by C func-
tions in the simulator, and accessed via the inline predicate ‘_$builtin’/1.
Thus, if a builtin predicate foo/3 was defined as builtin number 38, there
would be a definition in the system of the form

foo(X,Y,Z) :- ’_$builtin’(38).

In effect, a builtin is simply a segment of code in a large case (i.e. switch)
statement. Fach builtin is identified internally by an integer, referred to as

19

arg/3 =/2 < /2 =< /2
>=/2 > /2 I\ /2 N2

<</2 >>/2 =:=/2 =\ =/2
is/2 ?7=/2 \ = \ /1
‘_$builtin’/1 ‘_$call’/1 nonvar/1 var/1
integer/1 real/1 halt/0 true/0
fail/O0

Table 2: Inline Predicates of SB-Prolog

its “builtin number”, associated with it. The code for a builtin with buitin
number k corresponds to the k' case in the switch statement. SB-Prolog
limits the total number of builtins to 256.

Builtins, unlike inline predicates, can be redefined by the user. For ex-
ample, the predicate foo/3 above can be redefined simply by compiling the
new definition into a directory such that during dynamic loading, the new
definition would be encountered first and loaded.

A list of the builtins currently provided is listed in Appendix A. Ap-
pendix C describes the procedure to be followed in order to define new builtin
predicates.

Like builtin predicates, library predicates may also be redefined by the
user. The essential difference between builtin and library predicates is that
whereas the former are coded into the simulator in C, the latter are written
in Prolog.

5.1 Input and Output

Input and output are done with respect to the current input and output
streams. These can be set, reset or checked using the file handling predicates
described below. The default input and output streams are denoted by user,
and refer to the user’s terminal.

5.1.1 File Handling

see(F') F becomes the current input stream. F' must be instantiated to an
atom at the time of the call.

seeing(F') F is unified with the name of the current input file.

seen Closes the current input stream.

20

tell(F') F becomes the current output stream. F must be instantiated to
an atom at the time of the call.

telling(F') F is unified with the name of the current output file.
told Closes the current output stream.

$exists(F') Succeeds if file F' exists.

5.1.2 Term I/0O

read(X) The next term, delimited by a full stop (i.e. a . followed by a
carriage-return or a space), is read from the current input stream and
unified with X. The syntax of the term must accord with current
operator declarations. If a call read(X) causes the end of the current
input stream to be reached, X is unified with the atom ‘end_of file’.
Further calls to read for the same stream will then cause an error
failure.

write(X) The term X is written to the current output stream according to
operator declarations in force.

display(X) The term X is displayed on the terminal.

writeq(Term) Similar to write(7erm), but the names of atoms and func-
tors are quoted where necessary to make the result acceptable as input
to read.

print(Term) Prints out the term Term onto the current output stream.
This predicate provides a handle for user-defined pretty-printing. If
Term is a variable then it is written using write/1; otherwise, if a
user-defined predicate portray/1 is defined, then a call is made to
portray(Term); otherwise, print/1 is equivalent to write/1.

writename(Term) If Term is an uninstantiated variable, its name, which
looks a lot like an address in memory, is written out; otherwise, the
principal functor of Term is written out.

writeqname(Term) As for writename, but the names are quoted where
necessary.

21

print_al(N, A) Prints A (which must be an atom or a number) left-aligned
in a field of width N, with blanks padded to the right. If A’s print
name is longer than the field width N, then A is printed but with no
right padding.

print_ar(N, A) Prints A (which must be an atom or a number) right-
aligned in a field of width N, with blanks padded to the left. If A’s
print name is longer than the field width N, then A is printed but with
no left padding.

portray_term(Term) Writes out the term Term on the current output
stream. Variables are treated specially: an uninstantiated variable is
printed out as Vn, where n is a number.

portray_clause(Term) Writes out the term Term, interpreted as a clause,
on the current output stream. Variables are treated as in portray_term/1.

5.1.3 Character I/O

nl A new line is started on the current output stream.

getO(N) Nis the ASCII code of the next character from the current input
stream. If the current input stream reaches its end of file, a —1 is
returned (however, unlike in C-Prolog, the input stream is not closed
on encountering end-of-file).

get(N) N is the ASCII code of the next non-blank printable character from
the current input stream. It has the same behaviour as getO on end
of file.

put(IN) ASCII character code N is output to the current output stream. N
must be an integer.

tab(N) N spaces are output to the current output stream. N must be an
integer.
5.2 Arithmetic

Arithmetic is performed by evaluable predicates which take as arguments
arithmetic expressions and evaluate them. An arithmetic expression is a
term built from ewvaluable functors, numbers and variables. At the time of
evaluation, each variable in an arithmetic expression must be bound to a

22

number or to an arithmetic expression. Each evaluable functor stands for an
arithmetic operation.

The evaluable functors are as follows, where X and Y are arithmetic
expressions.

X +Y addition.

X —Y subtraction.

X %Y multiplication.

X/Y division.

X//Y integer division.

X (modY) X (integer) modulo Y.

—X unary minus.

X /\ 'Y integer bitwise conjunction.

X \/ Y integer bitwise disjunction.

X <Y integer bitwise left shift of X by Y places.
X > Y integer bitwise right shift of X by Y places.
\X integer bitwise negation.

As far as unification is concerned, no type distinction is made between
integers and floating point numbers, and no explicit type conversion is nec-
essary when unifying an integer with a float. However, due to the finite
precision representation of floating point numbers and cumulative round-
off errors in floating point arithmetic, comparisons involving floating point
numbers may not always give the expected results. An effort is made to min-
imize surprises by considering two numbers z and y (at least one of which is a
float) to be unifiable if (||| — ||y||)/ min(||z||, ly|]) to be less than 10~°. The
user should note, however, that this does not guarantee immunity against
round-off errors.

The arithmetic evaluable predicates are as follows, where X and Y stand
for arithmetic expressions, and Z for some term. Note that this means that
is only evaluates one of its arguments as an arithmetic expression (the right-
hand side one), whereas all the comparison predicates evaluate both their
arguments.

23

7 is X Arithmetic expression X is evaluated and the result, is unified with 7.
Fails if X is not an arithmetic expression. Unlike many other Prolog
systems, variables in the expression X may be bound to other arith-
metic expressions as well as to numbers.

eval(E, X) Evaluates the arithmetic expression E and unifies the result
with the term X. Fails if E is not an arithmetic expression. (Thus,
eval/2 is, except for the switched argument order, the same as is/2.
It’s around mainly for historical reasons.)

X=:=Y The values of X and Y are equal. If either X or Y involve com-
pound subexpressions that are created at runtime, they should first be
evaluated using eval/2.

X=\ =Y The values of X and Y are not equal. If either X or Y involve
compound subexpressions that are created at runtime, they should first
be evaluated using eval/2.

X <Y The value of X is less than the value of Y. If either X or Y involve
compound subexpressions that are created at runtime, they should first
be evaluated using eval/2.

X>Y The value of X is greater than the value of Y. If either X or Y involve
compound subexpressions that are created at runtime, they should first
be evaluated using eval/2.

X=<Y The value of X is less than or equal to the value of Y. If either X
or Y involve compound subexpressions that are created at runtime,
they should first be evaluated using eval/2.

X>=Y The value of X is greater than or equal to the value of Y. If either X
or Y involve compound subexpressions that are created at runtime,
they should first be evaluated using eval/2.

floor(X, Y) If X is a floating point number in the call and Y is free, then YV’
is instantiated to the largest integer whose absolute value is not greater
than the absolute value of X; if X is uninstantiated in the call and Y is
an integer, then X is instantiated to the smallest float not less than Y.

floatc(F, M, E) If F is a number while M and FE are uninstantiated in the
call, then M is instantiated to a float m (of magnitude less than 1),

24

and F to an integer n, such that
F=mx2"

If F' is uninstantiated in the call while M is a float and E an integer,
then F becomes instantiated to M x 2%.

exp(X, Y) If X is instantiated to a number and Y is uninstantiated in
the call, then Y is instantiated to e* (where e = 2.71828...); if X is
uninstantiated in the call while Y is instantiated to a positive number,
then X is instantiated to log,(Y).

square(X, Y) If X is instantiated to a number while Y is uninstantiated in
the call, then Y becomes instantiated to X?; if X is uninstantiated in
the call while YV is instantiated to a positive number, then X becomes
instantiated to the positive square root of Y (if Y is negative in the
call, X becomes instantiated to 0.0).

sin(X, Y) If X is instantiated to a number (representing an angle in radi-
ans) and Y is uninstantiated in the call, then Y becomes instantiated to
sin(X) (the user should check the magnitude of X to make sure that
the result is meaningful). If YV is instantiated to a number between
—m/2 and 7/2 and X is uninstantiated in the call, then X becomes
instantiated to sin™'(Y).

5.3 Convenience

P,QQ P and then Q.

P;Q PorQ.

true Always succeeds.

X=Y Defined as if by the clause “Z=7",i.e. X and Y are unified.

X\ =Y Succeeds if X and Y are not unifiable, fails if X and Y are unifiable.
It is thus equivalent to not(X =Y'), but is significantly more efficient.

X7 =Y Succeeds if X and Y are unifiable and fails if they are not, but does
not instantiate any variables. Thus, it tests whether X and Y are
unifiable. Equivalent to not(not(X = Y')), but is significantly more
efficient.

25

5.4 Extra Control

! Cut (discard) all choice points made since the parent goal started execu-
tion. (The scope of cut in different contexts is discussed in Section 4.2).

not P If the goal P has a solution, fail, otherwise succeed. It is defined as
if by

not(P) :- P, ', fail.
not (_).

P— > @Q; Analogous to if P then) else R, i.e. defined as if by

P->Q ;R :-P, I, Q.
P->Q ; R :-R.

P— >@Q When occurring other than as one of the alternatives of a disjunc-
tion, is equivalent to

P > Q ; fail.

repeat Generates an infinite sequence of backtracking choices. It is defined
by the clauses:

repeat.
repeat :- repeat.

fail Always fails.

5.5 Meta-Logical

var(X) Tests whether X is currently instantiated to a variable.

nonvar(X) Tests whether X is currently instantiated to a non-variable
term.

atom(X) Checks that X is currently instantiated to an atom (i.e. a non-
variable term of arity 0, other than a number).

integer(X) Checks that X is currently instantiated to an integer.

real(X) Checks that X is currently instantiated to a floating point number.

26

float(X) Same as real/1, checks that X is currently instantiated to a float-
ing point number.

number(X) Checks that X is currently instantiated to a number, i.e. that
it is either an integer or a real.

atomic(X) Checks that X is currently instantiated to an atom or number.

structure(X) Checks that X is currently instantiated to a compound term,
i.e. to a nonvariable term that is not atomic.

is_buffer(X) Succeeds if X is instantiated to a buffer.

functor(7', F', N) The principal functor of term 7" has name F' and arity N,
where F' is either an atom or, provided N is 0, a number. Initially,
either 7" must be instantiated to a non-variable, or F' and N must
be instantiated to, respectively, either an atom and a non-negative
integer or an integer and 0. If these conditions are not satisfied, an
error message is given. In the case where T is initially instantiated to
a variable, the result of the call is to instantiate 1" to the most general
term having the principal functor indicated.

arg(/, 7', X) Initially, I must be instantiated to a positive integer and T
to a compound term. The result of the call is to unify X with the Ith
argument of term 7'. The arguments are numbered from 1 upwards.)
If the initial conditions are not satisfied or I is out of range, the call
merely fails.

X=_.Y Y is a list whose head is the atom corresponding to the principal
functor of X and whose tail is the argument list of that functor in X.
E.g.

product(0,N,N-1) =.. [product,0,N,N-1]
N-1 =.. [-,N,1]

product =.. [product]

If X is instantiated to a variable, then Y must be instantiated either
to a list of determinate length whose head is an atom, or to a list of
length 1 whose head is a number.

27

name(X, L) If X is an atom or a number then L is a list of the ASCII codes
of the characters comprising the name of X. E.g.

name (product, [112,114,111,100,117,99,116])

i.e. name (product,"product").

If X is instantiated to a variable, L must be instantiated to a list of
ASCII character codes. E.g.

| ?- name(X,[104,101,108,108,111]1)).
X = hello

| ?- name(X,"hello").
X = hello

call(X) If X is a nonvariable term in the program text, then it is executed
exactly as if X appeared in the program text instead of call(X), e.g.

..., p(a), call((q(X), r(¥))), s(X), ...
is equivalent to
. p@, g, r(), s, ...

However, if X is a variable in the program text, then if at runtime X
is instantiated to a term which would be acceptable as the body of a
clause, the goal call(X) is executed as if that term appeared textually
in place of the call(X), except that any cut (‘') occurring in X will
remove only those choice points in X. If X is not instantiated as
described above, an error message is printed and call fails.

X (where X is a variable) Exactly the same as call(X). However, we prefer
the explicit usage of call/1 as good programming practice, and the use
of a top level variable subgoal elicits a warning from the compiler.

conlength(C, L) Succeeds if the length of the print name of the constant C'
(which can be an atom, buffer or integer), in bytes, is L. If C'is a buffer
(see Section 5.8), it is the length of the buffer; if C' is an integer, it is the
length of the decimal representation of that integer, i.e., the number
of bytes that a $writename will use.

28

5.6 Sets

When there are many solutions to a problem, and when all those solutions
are required to be collected together, this can be achieved by repeatedly
backtracking and gradually building up a list of the solutions. The following
evaluable predicates are provided to automate this process.

setof(X, P, S) Read this as S is the set of all instances of X such that
P is provable”. If P is not provable, setof(X,P,S) succeeds with S
instantiated to the empty list []. The term P specifies a goal or goals
as in call(P). S is a set of terms represented as a list of those terms,
without duplicates, in the standard order for terms (see Section 5.7).
If there are uninstantiated variables in P which do not also appear in
X, then a call to this evaluable predicate may backtrack, generating
alternative values for S corresponding to different instantiations of the
free variables of P. Variables occurring in P will not be treated as free
if they are explicitly bound within P by an existential quantifier. An
existential quantification is written:

Y AQ

meaning there exists a Y such that @) is true, where Y is some Prolog
term (usually, a variable, or tuple or list of variables).

bagof(X, P, Bag) This is the same as setof except that the list (or alter-
native lists) returned will not be ordered, and may contain duplicates.
If P is unsatisfiable, bagof succeeds binding Bag to the empty list.
The effect of this relaxation is to save considerable time and space in
execution.

findall(X, P, L) Similar to bagof/3, except that variables in P that do not
occur in X are treated as local, and alternative lists are not returned for
different bindings of such variables. The list L is, in general, unordered,
and may contain duplicates. If P is unsatisfiable, findall succeeds bind-
ing S to the empty list.

X A P The system recognises this as meaning there exists an X such that
P is true, and treats it as equivalent to call(P). The use of this
explicit existential quantifier outside the setof and bagof constructs
is superfluous.

29

5.7

Comparison of Terms

These evaluable predicates are meta-logical. They treat uninstantiated vari-
ables as objects with values which may be compared, and they never instan-
tiate those variables. They should not be used when what you really want
is arithmetic comparison (Section 5.2) or unification. The predicates make
reference to a standard total ordering of terms, which is as follows:

variables, in a standard order (roughly, oldest first — the order is not
related to the names of variables);

numbers, from —oo to 400;
atoms, in alphabetical (i.e. ASCII) order;

complex terms, ordered first by arity, then by the name of principal
functor, then by the arguments (in left-to-right order).

For example, here is a list of terms in the standard order:

[X, -9, 1, fie, foe, fum, X = Y, fie(0,2), fie(1,1)]

The basic predicates for comparison of arbitrary terms are:

X ==Y Tests if the terms currently instantiating X and Y are literally

identical (in particular, variables in equivalent positions in the two
terms must be identical). For example, the question

| 7- X == Y.

fails (answers no) because X and Y are distinct uninstantiated vari-
ables. However, the question

| - X =Y, X == Y.

succeeds because the first goal unifies the two variables (see page 7).

X\ ==Y Tests if the terms currently instantiating X and Y are not literally

identical.

T1 @< T2 Term T1 is before term T2 in the standard order.

T1 @> T2 Term T1 is after term 72 in the standard order.

30

T1 @Q=< T2 Term T1 is not after term 72 in the standard order.
T1 @>= T2 Term T1 is not before term T2 in the standard order.

Some further predicates involving comparison of terms are:

compare(Op, T1, T2) The result of comparing terms 71 and T2 is Op,
where the possible values for Op are:

‘= if IT1 is identical to T2,
‘<’ if T1 is before T2 in the standard order,
“>? if T1 is after T2 in the standard order.

Thus compare(=, T1,T2) is equivalent to 71 == T2.

sort(L1, L2) The elements of the list LI are sorted into the standard order,

and any identical (i.e. ‘==") elements are merged, yielding the list L2.

keysort(L1, L2) The list L1 must consist of items of the form Key—Value.
These items are sorted into order according to the value of Key, yielding
the list L2. No merging takes place.

5.8 Buffers

SB-Prolog supports the concept of buffers. A buffer is actually a constant and
the characters that make up the buffer is the name of the constant. However,
the symbol table entry for a buffer is not hashed and thus is not added to
the obj-list, so two different buffers will never unify. Buffers can be allocated
either in permanent space or on the heap. Buffers in permanent space stay
there forever; buffers on the heap are deallocated when the “allocate buffer”
goal is backtracked over.

A buffer allocated on the heap can either be a simple buffer, or it can be
allocated as a subbuffer of another buffer already on the heap. A subbuffer
will be deallocated when its superbuffer is deallocated.

There are occasions when it is not known, in advance, exactly how much
space will be required and so how big a buffer should be allocated. Sometimes
this problem can be overcome by allocating a large buffer and then, after
using as much as is needed, returning the rest of the buffer to the system.
This can be done, but only under very limited circumstances: a buffer is
allocated from the end of the permanent space, the top of the heap, or from
the next available space in the superbuffer; if no more space has been used

31

beyond the end of the buffer, a tail portion of the buffer can be returned to
the system. This operation is called “trimming” the buffer.
The following is a list of library predicates for buffer management:

alloc_perm(Size, Buff) Allocates a buffer with a length Size in the per-
manent (i.e. program) area. Size must be bound to a number. On
successful return, Buff will be bound to the allocated buffer. The
buffer, being in the permanent area, is never de-allocated.

alloc_heap(Size, Buff) Allocates a buffer of size Size on the heap and
binds Buff to it. Since it is on the heap, it will be deallocated on
backtracking.

trimbuff(Type, Buff, Newlen) This allows (in some very restricted cir-
cumstances) the changing of the size of a buffer. Type is 0 if the buffer
is permanent, 1 if the buffer is on the heap. Buffis the buffer. Newlen
is an integer: the size (which should be smaller than the original length
of the buffer) to make the buffer. If the buffer is at the top of the heap
(if heap buffer) or the end of the program area (if permanent) then the
heap-top (or program area top) will be readjusted down. The length
of the buffer will be modified to Newlen. This is (obviously) a very
low-level primitive and is for hackers only to implement grungy stuff.

conlength(Constant,Length) Succeeds if the length of the print name of
the constant Constant (which can be an atom, buffer or integer), in
bytes, is Length. If Constant is a buffer, it is the length of the buffer;
if Constant is an integer, it is the length of the decimal representation
of that integer, i.e., the number of bytes that a $Swritename will use.

5.9 Modification of the Program

The predicates defined in this section allow modification of the program
as it is actually running. Clauses can be added to the program (asserted)
or removed from the program (retracted). At the lowest level, the system
supports the asserting of clauses with upto one literal in the body. It does
this by allocating a buffer and compiling code for the clause into that buffer.
Such a buffer is called a “clause reference” (clref). The clref is then added to a
chain of clrefs. The chain of clrefs has a header, which is a small buffer called
a “predicate reference” (prref), which contains pointers to the beginning and
end of its chain of clrefs. Clause references are quite similar to “database
references” of C-Prolog, and can be called.

32

When clauses are added to the program through assert, an index is nor-
mally created on the principal functor of the first argument in the head of the
clause. The argument on which the index is being created may be changed
via the index/3 directive. In particular, if no index is desired on a predi-
cate, this should be specified using the indez/3 directive with the argument
number set to zero, e.g. if no index is desired on a predicate foo/3, then the
directive

:= index(foo, 3, 0).

should be specified.
The predicates that can be used to modify the program are the following:

assert(C') The current instance of C' is interpreted as a clause and is added
to the program (with new private variables replacing any uninstanti-
ated variables), at the end of the list of clauses for that predicate. C
must be instantiated to a non-variable.

assert(C, Ref) As for assert/1, but also unifies Ref with the clause refer-
ence of the clause asserted.

asserti(C',N) The current instance of C, interpreted as a clause, is asserted
to the program with an index on its N'* argument. If N is zero, no
index is created.

asserta(C) Similar to assert(C'), except that the new clause becomes the
first clause of the procedure concerned.

asserta(C, Ref) Similar to asserta(C'), but also unifies Ref with the clause
reference of the clause asserted.

assertz(C') Similar to assert(C), except that the new clause becomes the
last clause of the procedure concerned.

assertz(C, Ref) Similar to assertz(C'), but also unifies Ref with the clause
reference of the clause asserted.

assert_union(P, Q) The clauses for @) are added to the clauses for P. For
example, the call

| ?- assert_union(p(X,Y),q(X,Y)).

has the effect of adding the rule

33

p(X,¥) :- qX,¥).

as the last rule defining p/2. If P is not defined, it results in the call
to @ being the only clause for P.

The variables in the arguments to assert_union/2 are not significant,
e.g. the above would have been equivalent to

| ?- assert_union(p(Y,X),qX,¥V)).
or
| ?- assert_union(p(-,-),q(-,)).

However, the arities of the two predicates involved must match, e.g.
even though the goal

| ?- assert_union(p(X,Y), r(X,Y,Z)).

will succeed, the predicate p/2 will not in any way depend on the
clauses for r/3.

assert(Clause, AZ, Index,Clref) Asserts a clause to a predicate. Clause
is the clause to assert. AZ is 0 for insertion as the first clause, 1 for
insertion as the last clause. Index is the number of the argument on
which to index (0 for no indexing). Clref is returned as the clause ref-
erence of the fact newly asserted. If the main functor symbol of Clause
has been declared (by $assertf_alloc_t/2, see below) to have its clauses
on the heap, the clref will be allocated there. If the predicate symbol
of Clause is undefined, it will be initialized and Clause added. If the
predicate symbol has compiled clauses, it is first converted to be dy-
namic (see symtype/2, Section 5.10) by adding a special clref that calls
the compiled clauses. Fact, AZ and Indez are input arguments, and
should be instantiated at the time of call; Clrefis an output argument,
and should be uninstantiated at the time of call.

clause(P,Q) Pmust be bound to a non-variable term, and the program is
searched for a clause Cl whose head matches P. The head and body
of the clause Cl is unified with P and @), respectively. If Clis a unit
clause, @ will be unified with ‘true’. Only interpreted clauses, i.e. those
created through assert, can be accessed via clause/2.

34

clause(Head, Body, Ref) Similar to clause(Head,Body) but also unifies
Ref with the database reference of the clause concerned. clause/3 can
be executed in one of two modes: either Head must be instantiated to
a non-variable term at the time of the call, or Ref must be instantiated
to a database reference. As in the case of clause/2, only interpreted
clauses, i.e. those created through assert, can be accessed via clause/3.

retract(Clause) The first clause in the program that unifies with Clause
is deleted from the program. This predicate may be used in a non-
deterministic fashion, i.e. it will successively backtrack to retract clauses
whose heads match Head. Head must be initially instantiated to a non-
variable. In the current implementation, retract works only for asserted
(e.g. consulted) clauses.

abolish(P) Completely remove all clauses for the procedure with head P
(which should be a term). For example, the goal

| ?- abolish(p(., -,)).

removes all clauses for the predicate p/3.

abolish(P, N) Completely remove all clauses for the predicate P (which
should be an atom) with arity N (which should be an integer).

5.10 Internal Database

recorded(Key, Term, Ref) The internal database is searched for terms
recorded under the key Key. These terms are successively unified with
Term in the order they occur in the database; at the same time, Ref
is unified with the database reference of the recorded item. The key
must be given, and may be an atom or complex term. If it is a complex
term, only the principal functor is significant.

recorda(Key, Term, Ref) The term Termisrecorded in the internal database
as the first item for the key Key, where Ref is its database reference.
The key must be given, and only its principal functor is significant.

recordz(Key, ITerm, Ref) The term Term is recorded in the internal
database as the last item for the key Key, where Ref is its database
reference. The key must be given, and only its principal functor is
significant.

35

erase(Clref) The recorded item or clause whose database reference is Clref
is deleted from the internal database or program. Clref should be
instantiated at the time of call.

instance(Ref, Term) A (most general) instance of the recorded term whose
database reference is Ref is unified with Term. Ref must be instanti-
ated to a database reference. Note that instance/2 will not be able to
access terms that have been erased.

5.11 Information about the State of the Program

listing Lists in the current output stream the clauses for all the interpreted
predicates in the program, except predicates that are “internal”, i.e.
whose names begin with ‘¢’ or ‘_$’, or which are provided as predefined
(builtin or library) predicates. A bug in the current system is that even
though the user is allowed to redefine such predicates, listing/0 does not
know about such redefinitions, and will not list such predicates (they
may, however, be accessed through listing/1 if they are interpreted).

listing(A) The argument A may be a predicate specification of the form
Name/ Arity in which case only the clauses for the specified predicate
are listed. Alternatively, it is possible for A to be a list of predicate
specifications, e.g.

| ?- listing([concatenate/3, reverse/2, go/0]).

Only interpreted clauses, i.e. clauses created via assert, can be accessed
through listing/1.

current_atom(Atom) Generates (through backtracking) all currently known
atoms, and unifies each in turn with Atom. However, atoms considered
“Internal” symbols, i.e. those whose names begin with $ or _$ are not
returned. The intrepid user who wishes to access such internal atoms
as well can use the goal

?- $current_atom(Atom, 1).
current_functor(Name, Term) Generates (through backtracking) all cur-

rently known functors (which includes function and predicate symbols),
and for each one returns its name and most general term as Name

36

and Term respectively. However, functors considered “internal” sym-
bols, i.e. those whose names begin with $ or _$, or which are provided
as predefined predicates, are not returned if both arguments to cur-
rent_functor/2 are variables. Internal symbols (of which there are a
great many) as well as external ones may be accessed via

?- $current_functor(Name, Term, 1).

A bug in the current implementation is that even though the user

is allowed to redefine “internal” (builtin or library) predicates, cur-
rent_functor/2 does not know whether they have been redefined, and
hence will not return such predicates if both arguments to current_functor/2
are variables.

current_predicate(Name, Term) Generates (through backtracking) all
currently known predicates, and for each one returns its name and most
general term as Name and Term respectively. However, predicates
considered “internal”, i.e. those whose names begin with $ or _$, or
which are provided as predefined predicates, are not returned if both
arguments to current_predicate/2 are variables. Internal symbols (of
which there are a great many) as well as external ones may be accessed
via

?- $current_predicate (Name, Term, 1).

A bug in the current implementation is that even though the user

is allowed to redefine “internal” (builtin or library) predicates, cur-
rent_predicate/2 does not know whether they have been redefined, and
hence will not return such predicates if both arguments to current_predicate/2
are variables.

predicate_property(Term, Property) If Term is a term whose principal
functor is a predicate, Property is unified with the currently known
properties of the corresponding predicate. If Term is a variable, then
it is unified (successively, through backtracking) with the most general
term for a predicate whose known properties are unified with Property.
For example, all the interpreted predicates in the program may be
enumerated using

?7- predicate_property(X, interpreted).

37

If the first argument to predicate_property/2 is uninstantiated at the
time of the call, “internal” predicates will not be returned. A bug in
the current implementation is that even though the user is allowed to
redefine such “internal” predicates, predicate_property/2 does not know
about such redefinitions, and will not return such predicates if its first
argument is uninstantiated. Currently, the only properties that are
considered are interpreted and compiled.

5.12 Environmental

op(priority, type, name) Treat name as an operator of the stated type
and priority (see Section 3.2). name may also be a list of names, in
which all are to be treated as operators of the stated type and priority.

break Causes the current execution to be suspended at the next procedure
call. Then the message [Break (level 1)] isdisplayed. The inter-
preter is then ready to accept input as though it was at the top level
(except that at break level n > 0, the prompt is n: ?-). If another
call of break is encountered, it moves up to level 2, and so on. To
close the break and resume the execution which was suspended, type
the END-OF-INPUT character. Execution will be resumed at the pro-
cedure call where it had been suspended. Alternatively, the suspended
execution can be aborted by calling the evaluable predicate abort,
which causes a return to the top level.

abort Aborts the current execution, taking you back to top level.
save(F') The system saves the current state of the system into file F'.

restore(F') The system restores the saved state in file F' to be the current
state. One restriction imposed by the current system is that various
system parameters (e.g. stack sizes, permanent space, heap space, etc.)
of the saved state have to be the same as that of the current invoca-
tion. Thus, it is not possible to save a state from an invocation where
50000 words of permanent space had been allocated, and then restore
the same state in an invocation with 100000 words of permanent space.

cputime(X) Unifies X with the time elapsed, in milliseconds, since the
system was started up.

$getenv(Var,Val) Val is unified with the value of the Unix environment
variable Var. Fails is Var is undefined.

38

statistics Prints out the current allocations and amounts of space used for
each of the four main areas: the permanent area, the local stack, the
global stack and the trail stack. Does not work well unless the simulator
has been called with the -s option (see Section 7.2).

statistics(Keyword, List) Usually used with Keyword instantiated to a
keyword, e.g. ‘runtime’, and List unbound. It unifies List with a list of
statistics determined by Keyword. The keys and values are summarized
in Table 5.12. Times are given in milliseconds and sizes are given in

bytes.
‘ Keyword ‘ List
runtime [cpu time used by Prolog, cpu time since
last call to statistics/2]
memory [total virtual memory, 0]
core (same as for the keyword memory)
program [program space in use, program space free]
heap (same as for the keyword program)

global_stack [global stack in use, global stack free]
local_stack [local stack in use, local stack free]
trail [trail stack in use, trail stack free]
garbage_collection | [0, 0]

stack_shifts [0, 0]

Table 3: Run Time Statistics Predicates

Note:

1. For the keyword ‘memory’ the second element of the returned list is
always 0.

2. For the keyword ‘trail’, the second element of the returned list is the
amount of trail stack free. This is similar to Sicstus Prolog (version 0.5),
but different from Quintus Prolog (version 1.6).

3. Currently, SB-Prolog does not have garbage collection or stack shifting,
hence the list values returned for these are [0, 0].

nodynload(P, N) Flags the predicate P with arity N as one that should
not be attempted to be dynamically loaded if it is undefined. If a
predicate so flagged is undefined when a call to it is encountered, the
call fails quietly without trying to invoke the dynamic loader or giving

39

an error message. P and N should be instantiated to an atom and an
integer, respectively, at the time of call to nodynload/2.

symtype(T', N) Unifies N with the “internal type” of the principal functor
of the term T, which must be instantiated at the time of the call. N
is bound to 0 if 7" does not have an entry point defined (i.e. cannot
be executed); to 1 if the principal functor of T is “dynamic”, i.e. has
asserted code; to 2 if the principal functor for 7" is a compiled predicate;
and 3 if T denotes a buffer. Thus, for example, if the predicate p/2 is
a compiled predicate which has been loaded into the system, the goal

| ?- symtype(p(_,)), X).
will succeed binding X to 2; on the other hand, the goal
| ?- assert(q(a,b,c)), symtype(q(-,-,), X).

will succeed binding X to 1.

system(Call) Calls the operating system with the atom Call as argument.
For example, the call

| ?7- system(’1s’).

will produce a directory listing. Since system/1 is executed by forking
off a shell process, it cannot be used, for example, to change the working
directory of the simulator.

syscall(N, Args, Res) Executes the Unix system call number N with ar-
guments Args, and returns the result in Res. N is an integer, and Args
a Prolog list of the arguments to the system call. For example, to
execute the system call creat(File,Mode), knowing that the syscall
number for the Unix command creat(2) is 8, we execute the goal

| ?- syscall(8, [File, Model, Des).

where Des is the file descriptor returned by creat. The syscall numbers
for some Unix system calls are given in Table 4.

40

exit 1 | fork 2
read 3 | write 4
open 5 | close 6
creat 8 | link 9
unlink 10 | chdir 12
chmod 15 | Iseek 19
access 33 | kill 37
wait 84 | socket 97
connect 98 | accept 99
send 101 | recv 102
bind 104 | setsockopt 105
listen 106 | recvmsg 113
sendmsg 114 | getsockopt 118
recvirom 125 | sendto 133
socketpair 135 | mkdir 136
rmdir 137 | getsockname 150

Table 4: Syscall Numbers for Some Unix Systems Calls

5.13 Global Values

SB-Prolog has some primitives that permit the programmer to manipulate
global values. These are provided primarily as an efficiency hack, and need-
less to say, should be used with a great deal of care.

globalset(Term) Allows the user to save a global value. Term must be
bound to a compound term, say p(V). V must be a number or a
constant or a variable. If V' is a number or a constant, the effect of
globalset(p(V')) can be described as:

retract(p(.)), assert(p(V)).

Le., p is a predicate that when called will, from now on (until some
other change by globalset/1), deterministically return V. If V' is a vari-
able, the effect is to make V' a global variable whose value is accessible
by calling p. For example, executing globalset(p(X)) makes X a
global variable. X can be set by unification with some other term. On
backtracking, X will be restored to its earlier value.

gennum(Newnum) gennum/1 sets its argument to a new integer every
time it is invoked.

41

gensym(C, Newsym) gensym/2 sets its second argument to an atom whose
name is made by concatenating the name of the atom C' to the cur-
rent gennum number. This new constant is bound to Newsym. For
example, if the current gennum number is 37, then the call

| ?- gensym(aaa,X)
will succeed binding X to the atom ‘aaa37’.

5.14 Exotica

This section describes some low-level routines that are sometimes useful in
mucking around with buffers. These are for serious hackers only.

$alloc_buff(Size, Buff, Type, Supbuff, Retcode) Allocates a buffer. Size is
the length (in bytes) of the buffer to allocate; Buff is the buffer allo-
cated, and should be unbound at the time of the call; Type indicates
where to allocate the buffer: a value of 0 indicates that the buffer is
to be allocated in permanent space, 1 that it should be on the heap,
and 2 indicates that it should be allocated from a larger heap buffer;
Supbuff is the larger buffer to allocate a subbuffer out of, and is only
looked at if the value of Type is 2; Retcode is the return code: a value
of 0 indicates that the buffer has been allocated, while a value of 1
indicates that the buffer could not be allocated due to lack of space.
The arguments Size, Type, and Supbuff (if Type = 2) are input argu-
ments, and should be bound at the time of the call; Buff and Retcode
are output arguments, and should be unbound at the time of the call.

call_ref(Call, Ref) Calls the predicate whose database reference (prref) is
Ref, using the literal Call as the call. This is similar to call_ref(Call,
Ref, 0).

call_ref(Call, Ref, Tr) Calls the predicate whose database reference (prref)
is Ref, using the literal Call as the call. Tr must be either 0 or 1: if Tris
0 then the call Call is made assuming the “trust” optimization will be
made; if Tris 1 then the “trust” optimization is not used, so that any
new fact added before final failure will be seen by Call. (Also, this cur-
rently does not take advantage of any indexing that might have been
constructed.) Call, Ref and Tr are all input arguments, and should be
instantiated at the time of call.

42

$assertf_alloc_t(Palist,Size) Declares that each predicate in the list Pal-
ist of predicate/arity pairs (terms of the form ‘/’(P,N) where P is a
predicate symbol and N the arity of P) is to have any facts asserted
to them stored in a buffer on the heap, to be allocated here. This
allocates a superbuffer of size Size on the heap. Future assertions to
these predicates will have their clauses put in this buffer. When this
call is backtracked over, any clauses asserted to these predicates are
deallocated, and a subsequent call to any of those predicates will cause
the simulator to report an error and fail. Both Palist and Size are
input arguments, and should be instantiated at the time of call.

$db_new_prref(Prref, Where,Supbuff) Creates an empty Prref, i.e. one
with no facts in it. If called, it will simply fail. Where indicates where
the prref should be allocated: a value of 0 indicates the permanent area,
while a value of 2 indicates that it is to be allocated as a subbuffer.
Supbuff is the superbuffer from which to allocate Prref if Where is 2.
Where should be instantiated at the time of call, while Prref should be
uninstantiated; in addition, if Where is 2, Supbuff should be instanti-
ated at the time of call.

$db_assert_fact(Fact, Prref,A Z,Index, Clref, Where,Supbuff) Factis a
fact to be asserted; Prref is a predicate reference to which to add the
asserted fact; AZ is either 0, indicating the fact should be inserted as
the first clause in Prref, or 1, indicating it should be inserted as the
last; Indez is 0 if no index is to be built, or n if an index on the n'*
argument of the fact is to be used. (Asserting at the beginning of
the chain with indexing is not yet supported.) Where indicates where
the clref is to be allocated: a value of 0 indicates that it should be
in the permanent area, while a value of 2 indicates that it should be
allocated as a subbuffer of Supbuff. Clrefis returned and it is the clause
reference of the asserted fact. Fact, Prref, AZ, Index, and Where are
input arguments, and should be instantiated at the time of call; in
addition, if Where is 2, then Supbuff should also be instantiated. Clref
is an output argument, and should be uninstantiated at the time of
call.

$db_add_clref(Fact, Prref,A Z,Indez, Clref, Where,Supbuff) Adds the clref
Clref to the prref Prref. Fact is the fact that has been compiled into
Clref (used only to get the arity and for indexing). The other param-
eters are as for $db_assert_fact/7.

43

$db_call_prref(Call, Prref) Calls the prref Prref using the literal Call as
the call. The call is done by simply branching to the first clause. New
facts added to Prref after the last fact has been retrieved by Call, but
before Call is failed through, will not be used. Both Call and Prref are
input arguments, and should be instantiated at the time of call.

$db_call_prref_s(Call,Prref) This also calls the prref Prref using Call as
the call. The difference from $db_call_prref is that this does not use the
“trust” optimization, so that any new fact added before final failure will
be seen by Call. (Also, this currently does not take advantage of any
indexing that might have been constructed, while $db_call_prref does.)
Both Call and Prref are input arguments, and should be instantiated
at the time of call.

$db_get_clauses(Prref, Clref,Dir) This returns, nondeterministically, all
the clause references Clref for clauses asserted to prref Prref. If Dir
is 0, then the first clref on the list is returned first; if Diris 1, then they
are returned in reverse order. Prref and Dir are input arguments, and
should be instantiated at the time of call; Clrefis an output argument,
and should be uninstantiated at the time of call.

6 Debugging

6.1 High-Level Tracing

The preferred method of tracing execution is through the predicate trace/1.
This predicate takes as argument a term P/N, where P is a predicate name
and N its arity, and sets a “trace point” on the corresponding predicate; it
can also be given a list of such terms, in which case a trace point is set on
each member of the list. For example, executing

| ?- trace(predl/2), trace([pred2/3, pred3/2]).

sets trace points on predicates pred1/2, pred2/3 and pred3/2. Only those
predicates are traced that have trace points set on them.

If all the predicates in a file are to be traced, it is usually convenient to
use the PredList parameter of compile/4 or consult/3, e.g.:

| ?7- compile(foo, ’foo.out’, [t,v], Preds), load(’foo.out’),
trace(Preds).

44

or
| ?- consult(foo, [v], Preds), trace(Preds).

Notice that in the first case, the t compiler option (see Section 8.2) should be
specified in order to turn off certain assembler optimizations and facilitate
tracing. In the second case, the same effect may be achieved by specifying
the t option to consult.

The trace points set on predicates may be overwritten by loading byte
code files via load/1, and in this case it may be necessary to explicitly set
trace points again on the loaded predicates. This does not happen with
consult: predicates that were being traced continue to have trace points set
after consulting.

The tracing facilities of SB-Prolog are in many ways very similar to those
of C-Prolog. However, leashing is not supported, and only those predicates
can be traced which have had trace points set on them through trace/1.
This makes trace/1 and spy/1 very similar: essentially, trace amounts to two
levels of spy points. In SB-Prolog, tracing occurs at Call (i.e. entry to a
predicate), successful Erzit from a clause, and Failure of the entire call. The
tracing options available during debugging are the following;:

¢, newline: Creep Causes the system to single-step to the next port (i.e.
either the entry to a traced predicate called by the executed clause, or
the success or failure exit from that clause).

a: Abort Causes execution to abort and control to return to the top level
interpreter.

b: Break Calls the evaluable predicate break, thus invoking recursively a
new incarnation of the system interpreter. The command prompt at
break level n is

n: 7-

The user may return to the previous break level by entering the system
end-of-file character (e.g. ctrl-D), or typing in the atom end_of-file; or
to the top level interpreter by typing in abort.

f: Fail Causes execution to fail, thus transferring control to the Fail port of
the current execution.

h: Help Displays the table of debugging options.

45

I: Leap Causes the system to resume running the program, only stopping
when a spy-point is reached or the program terminates. This allows the
user to follow the execution at a higher level than exhaustive tracing.

n: Nodebug Turns off debug mode.

q: Quasi-skip This is like Skip except that it does not mask out spy points.

3

Retry (fail) Transfers to the Call port of the current goal. Note, how-
ever, that side effects, such as database modifications etc., are not
undone.

Skip Causes tracing to be turned off for the entire execution of the proce-
dure. Thus, nothing is seen until control comes back to that procedure,
either at the Success or the Failure port.

v

Other predicates that are useful in debugging are:

untrace(Preds) where Preds is a term P/N, where P is a predicate name
and N its arity, or a list of such terms. Turns off tracing on the specified
predicates. Preds must be instantiated at the time of the call.

spy (Preds) where Preds is a term P/N, where P is a predicate name and
N its arity, or a list of such terms. Sets spy points on the specified
predicates. Preds must be instantiated at the time of the call.

nospy(Preds) where Preds is a term P/N, where P is a predicate name
and N its arity, or a list of such terms. Removes spy points on the
specified predicates. Preds must be instantiated at the time of the call.

debug Turns on debugging mode. This causes subsequent execution of
predicates with trace or spy points to be traced, and is a no-op if
there are no such predicates. The predicates trace/1 and spy/1 cause
debugging mode to be turned on automatically.

nodebug Turns off debugging mode. This causes trace and spy points to
be ignored.

debugging Displays information about whether debug mode is on or not,
and lists predicates that have trace points or spy points set on them.

tracepreds(L) Binds L to a list of terms P/N where the predicate P of
arity N has a trace point set on it.

46

spypreds(L) Binds L to a list of terms P/N where the predicate P of arity
N has a spy point set on it.

There is one known bug in the package: attempts to set trace points, via
trace/1, on system and library predicates that are used by the trace package
can cause bizarre behaviour.

6.2 Low-Level Tracing

SB-Prolog also provides a facility for low-level tracing of execution. This can
be activated by invoking the simulator with the -T option, or through the
predicate $trace/0. It causes trace information to be printed out at every
call (including those to system trap handlers). The volume of such trace
information can very become large very quickly, so this method of tracing is
not recommended in general.

Low-level tracing may be turned off using the predicate untrace/0.

7 The Simulator

The simulator resides in the SB-Prolog system directory sim. The following
sections describe various aspects of the simulator.

7.1 Invoking the Simulator

The simulator is invoked by the command
sbprolog be_file

where bc_file is a byte code file resulting from the compilation of a Prolog pro-
gram. In almost all cases, the user will wish to interact with the SB-Prolog
query evaluator, in which case bc_file will be $readloop, and the command
will be

sbprolog Path/$readloop

where Path is the path to the directory containing the command interpreter
$readloop. This directory, typically, is the system directory modlib.

The command interpreter reads in a query typed in by the user, evaluates
it and prints the answer(s), repeating this until it encounters an end-of-file
(the standard end-of-file character on the system, e.g. ctrl-D), or the user
types end_of_file or halt.

47

The user should ensure that the the directory containing the executable
file sim (typically, the system directory sim) is included in the shell variable
path; if not, the full path to the simulator will have to be specified.

In general, the simulator may be invoked with a variety of options, as
follows:

sbprolog -options be_file
or
sbprolog -option, -option, ... —option, bc_file

The options recognized by the simulator are described below.

When called with a byte code file bc_file, the simulator begins execution
with the first clause in that file. The first clause in such a file, therefore,
should be a clause without any arguments in the head (otherwise, the sim-
ulator will attempt to dereference argument pointers in the head that are
really pointing into deep space, and usually come to a sad end). If the
user is executing a file in this manner rather than using the command in-
terpreter, he should also be careful to include the undefined predicate handler
‘_$undefined_pred’ /1, which is normally defined in the file mod1ib/$init_sys.P.

7.2 Simulator Options
The following is a list of options recognized by the simulator.
T Generates a trace at entry to each called routine.

d Produces a disassembled dump of bc_file into a file named ‘dump.pil’ and
exits.

n Adds machine addresses when producing trace and dump.
s Maintains information for the builtin statistics/0. Default: off.

m size Allocates size words (4 bytes) of space to the local stack and heap
together. Default: 100000.

p size Allocates size words of space to the program area. Default: 100000.

b size Allocates size words of space to the trail stack. Default: m/5, where
m is the amount of space allocated to the local stack and heap together.
This parameter, if specified, must follow the -m parameter.

48

As an example, the command
sbprolog -s -p 60000 -m 150000 \$readloop

starts the simulator executing the command interpreter with 60000 bytes
of program space, 150000 bytes of local and global stack space and (by
default) 30000 bytes of trail stack space; the s option also results in statistics
information being maintained.

7.3 Interrupts

SB-Prolog provides a facility for exception handling using user-definable in-
terrupt handlers. This can be used both for external interrupts, e.g. those
generated from the keyboard by the user or from signals other processes;
or internal traps, e.g. those caused by stack overflows, encountering unde-
fined predicates, etc. For example, the “undefined predicate” interrupt is
handled, by default, by the predicate ‘_$undefined_pred’/1, which is defined
in the files modlib/src/$init_sys.P and modlib/src/$readloop.P. The
default action on encountering an undefined predicate is to attempt to dy-
namically load a file whose name matches that of the undefined predicate.
However, the user may easily alter this behaviour by redefining the undefined
predicate handler.

In general, interrupts are handled by the predicate ‘_$interrupt’/2: a
call to this predicate is of the form ‘_$interrupt’(Call, Code), where Call is
the call that generated the interrupt, and Code is an integer indicating the
nature of the interrupt. For each interrupt code, the interrupt handler then
calls a handler that is designed to handle that particular kind of interrupt.
At this point, the following interrupt codes have predefined meanings:

0 undefined predicate;
1 keyboard interrupt (~C);
2 stack overflow.

Other interrupt codes may be incorporated by modifying the definition
of the predicate ‘_$ interrupt’/2 in the file mod1lib/src/$readloop.P.

Interrupts during execution are signalled from within the WAM simu-
lator. The general method for raising an interrupt is using the function
set_intercode in the file sim/sub_inst.c: to raise an interrupt whose code is
n, the line

49

lpcreg = set_intercode(n);

is added to the appropriate place in the main loop of the interpreter, defined
in sim/main.c.

8 The Compiler

The compiler translates Prolog source files into byte-code object files. It
is written entirely in Prolog. The byte code for the compiler can be found
in the SB-Prolog system directory cmplib, with the source code resident in
cmplib/src.

Byte code files may be concatenated together to produce other byte code
files. Thus, for example, if fool and foo2 are byte code files resulting from
the compilation of two Prolog source programs, then the file foo, obtained
by executing the shell command

cat fool foo2 > foo

is a byte code file as well, and may be loaded and executed. In this case,
loading and executing the file foo would give the same result as loading
fool and foo2 separately, which in turn would be the same as concatenating
the original source files and compiling this larger file. This makes it easier
to compile large programs: one need only break them into smaller pieces,
compile the individual pieces, and concatenate the byte files together.

The following sections describe the various aspects of the compiler in
more detail.

8.1 Invoking the Compiler
The compiler is invoked through the Prolog predicate compile:
| ?- compile(InFile [, OutFile 1 [, OptionsList 1).

where optional parameters are enclosed in brackets. InFile is the name of
the input (i.e. source) file; OutFile is the name of the output file (i.e. byte
code) file; OptionsList is a list of compiler options (see below).

The input and output file names must be Prolog atoms, i.e. either begin
with a lower case letter or dollar sign ‘$’, and consist only of letters, digits,
and underscores; or, be enclosed within single quotes. If the output file name
is not specified, it defaults to InFile.out. The list of options, if specified, is
a Prolog list, i.e. a term of the form

50

[option,, option,, ..., option, 1J.

If left unspecified, it defaults to the empty list [].
In fact, the output file name and the options list may be specified in any
order. Thus, for example, the queries

| ?- compile(’/usr/debray/foo’, foo_out, [v]).
and
| ?- compile(’/usr/debray/foo’, [v], foo_out).

are equivalent, and specify that the Prolog source file ‘/usr/debray/foo’ is
to be compiled in verbose mode (see “Compiler Options” below), and that
the byte code is to be generated into the file foo_out.

The compile predicate may also be called with a fourth parameter:

| ?- compile(InFile, OutFile, OptionsList, PredList).

where InFile, OutFile and OptionsList are as before; compile/4 unifies PredList
with a list of terms P/N denoting the predicates defined in InFile, where P
is a predicate name and N its arity. PredList, if specified, is usually given
as an uninstantiated variable; its principal use is for setting trace points on
the predicates in the file (see Section 6), e.g. by executing

| ?- compile(’/usr/debray/foo’, foo_out, [v], L),
load(foo_out), trace(L).

Notice that PredList can only appear in compile/4.

8.2 Compiler Options

The following options are currently recognized by the compiler:

a Specifies that an “assembler” file is to be created. The name of the assem-
bler file is obtained by appending .asl to the source file name. While
the writing out of assembly code slows down the compilation process
to some extent, it allows the assembler to do a better job of optimizing
away indirect subroutine linkages (since in this case the assembler has
assembly code for the entire program to work with at once, not just a
single predicate). This results in code that is faster and more compact.

d Dumps expanded macros to the user (see Section 10).

o1

e Expand macros (see Section 10).

t If specified, turns off assembler optimizations that eliminate indirect branches
through the symbol table in favour of direct branches. This is useful in
debugging compiled code. It is necessary if the extension table feature
is to be used.

v If specified, compiles in “verbose” mode, which causes messages regarding
progress of compilation to be printed out.

8.3 Assembly

The SB-Prolog assembler can be invoked by loading the compiler and using
the predicate $asm/3:

| ?- $asm(InFile, OutFile, OptionsList).

where InFile is a Prolog atom which is the name of a WAM assembly source
file (e.g. the “.asl” file generated when a Prolog program is compiled with
the “a” option), OutFile is an atom which is the name of the intended byte
code file, and OptionsList is a list of options. The options recognized by the
assembler are:

v “Verbose” mode. Prints out information regarding progress of assembly.

t “Trace”. If specified, the assembler generates code to force procedure calls
to branch indirectly via the symbol table, instead of using a direct
branch. This is useful for tracing compiled code. It is necessary if the
extension table feature is to be used.

The assembler is intended primarily to support the compiler, so the as-
sembly language syntax is quirky in places. The interested reader is advised
to look at the assembly files resulting from compilation with the “a” option
for more on SB-Prolog assembler syntax.

8.4 Compiler Directives
8.4.1 Mode Declarations

The user may declare input and output arguments of predicates using mode
declarations. These declarations, for an n-ary predicate p, are of the form

:- mode p(Mode).

52

where Mode consists of n mode values; or
:— mode(p, n, ModeList)

where ModeList is a list of mode values of length n. Mode values may be
the following:

¢, ++ Indicates that the corresponding argument position is always a ground
term in any call to the predicate. The argument is therefore an input
argument.

nv, + Indicates that the corresponding argument position is always a non-
variable term (i.e. is instantiated) in any call in any call to the predi-
cate. The argument is therefore an input argument.

f, — Indicates that the corresponding argument position is always an unin-
stantiated variable in any call to the predicate. The argument is there-
fore an output argument.

d, ? Indicates that the corresponding argument may be any term in calls to
the predicate.

For example, a 3-ary predicate p whose first argument is always a ground
term in a call, whose second argument is always uninstantiated, and whose
third argument can be any term, may have its mode declared as

:- mode p(++, --, d)
or as
:- mode(p, 3, [c, f, dI).

Currently, mode information is used by the compiler in two ways. First,
it often allows more compact code to be generated. The second use is in
guiding program transformations that allow faster code to be generated. For
example, the predicate

part (1, _, [O, [1).
part([E|L], M, [E|U1], U2) :- E =< M, part(L, M, U1, U2).
part([EIL], M, U1, [E|U2]) :- E > M, part(L, M, U1, U2).

executes about 30% faster with the mode declaration
:- mode part(++, ++, -, -).

than without.

93

8.4.2 Indexing Directives

The compiler usually generates an index on the principal functor of the first
argument of a predicate. The user may direct the compiler to generate an
index on any other argument by means of an indexing directive. This is of
the form

:- index(Pred, Arity, Indezdrg)

indicating that an index should be created on the IndexArg'™ argument of
the predicate Pred/Arity. All of the values Pred, Arity and IndexArg should
be bound in the directive: Pred should be an atom, Arity a nonnegative
integer, and IndezArg an integer between 0 and Arity. If IndexArg is 0,
then no index is created for that predicate. As an example, if we wished to
create an index on the third argument of a 5-ary predicate foo, the compiler
directive would be

:-= index(foo, 5, 3).

An index directive may be placed anywhere in the file containing the predi-
cate it refers to.

9 Libraries

To describe how libraries are currently supported in our system, we must
describe the interrupt handler _$undefined_pred/1. The system keeps a table
of libraries and routines that are needed from each. When a predicate is
found to be undefined, the table is searched to see if it is defined by some
library file. If so, that file is loaded (if it hasn’t been previously loaded) and
the association is made between the routine name as defined in the library
file, and the routine name as used by the invoker.
The table of libraries and needed routines is:

defined_mods(Modname, [pred, /arity,,...,pred, /arity,]).

where Modname is the name of the library. It exports n predicate definitions.
The first exported pred is of arity arity,, and needs to be invoked by the
name of pred,.

The table of libraries that have already been loaded is given by

loaded_mods (Modname) .

54

A library file is a file of predicate definitions, together with a fact defining a
list of predicates exported by it; and a set of facts, each of which specifies,
for some other library file, the predicates imported from that library file.
For example, consider a library name ‘p’. It contains a single fact, named
p_ezxport, that is true of the list of predicate/arities that are exported. E.g.

p_export ([pl/2, p2/41)

indicates that the module p exports the predicates p1/2 and p2/4. For each
library m which contains predicates needed by the library p, there is a fact
for p_use, describing what library is needed and the names of the predicates
defined there that are needed. For example, if library p needs to import
predicates ip1/2 and ip2/3 from library ¢, there would be a fact

p-use(q, [ip1/2, ip2/31)

where ¢ is a module that exports two predicates: one 2-ary and one 3-ary.
This list corresponds to the export list of library q.

The correspondence between the predicates in the export list of an ex-
porting library, and those in the import or use list of a library which imports
one or more of them, is by position, i.e. the predicate names at the exporting
and importing names may be different, and the association between names
in the two lists is by the position in the list. If the importing library does
not wish to import one or more of the predicates exported by the exporting
module, it may put an anonymous variable in the corresponding position in
its wse list. Thus, for example, if library p above had wished to import only
the predicate ip2/3 from library ¢, the corresponding use fact would be

p-use(q, [, ip2/3]1).

The initial set of predicates and the libraries from which they are to be
loaded is set up by an initial call to $prorc/0 (see the SB-Prolog system
file mod1lib/src/$prorc.P). This predicate makes initial calls to the pred-
icate $define_mod which set up the tables described above so that the use
of standard predicates will cause the correct libraries to be loaded in the
_$undefined_pred routine, and the correct names to be used.

10 Macros

SB-Prolog features a facility for the definition and expansion of macros that
is fully compatible with the runtime system. Its basic mechanism is a simple

95

partial evaluator. It is called by both consult and compile, so that macro
expansion occurs independently of whether the code is interpreted or com-
piled (but not when asserted). Moreover, the macro definitions are retained
as clauses at runtime, so that invocation of macros via call/1 at runtime (or
from asserted clauses) does not pose a problem. This means, however, that
if the same macro is used in many different files, it will be loaded more than
once, thus leading to wasted space. This ought to be thought about and
fixed.
The source for the macro expander is in the SB-Prolog system file mod1ib/src/$mac.P.

10.1 Defining Macros

‘Macros’, or predicates to be evaluated at compile-time, are defined by
clauses of the form

Head ::- Body

where facts have ‘true’ as their body. The partial evaluator will expand
any call to a predicate defined by ::—/2 that unifies with the head of only one
clause in ::—/2. If a call unifies with the head of more than one clause in :—
/2, it will not be expanded Notice that this is not a fundamental restriction,
since ‘;’ is permitted in the body of a clause. The partial evaluator also
converts each definition of the form

Head ::- Body.
to a clause of the form
Head :- Body.

and adds this second clause to the other “normal” clauses that were read
from the file. This ensures that calls to the macro at runtime, e.g. through
call/1 or from unexpanded calls in the program do not cause any problems.

The partial evaluator is actually a Prolog interpreter written ‘purely’ in
Prolog, i.e., variable assignments are explicitly handled. This is necessary to
be able to handle impure constructs such as var(X), X=a. As a result this
is a very slow Prolog evaluator.

Since naive partial evaluation can go into an infinite loop, SB-Prolog’s
partial evaluator maintains a depth-bound and will not expand recursive
calls deeper than that. The depth is determined by the globalset predicate
$mac_depth. The default value for $mac_depth is 50. This can be changed
to some other value n by executing

| ?- globalset($mac_depth(n)).

o6

10.2 Macro Expander Options
The following options are recognized by the macro expander:
d Dumps all clauses to the user after expansion. Useful for debugging.

e Expand macros. If omitted, the expander simply converts each ::—/2 clause
to a normal :—/2 clause.

v “Verbose” mode. Prints macros that are/are not being expanded.

11 Extension Tables: Memo Relations

Extension tables store the calls and answers for a predicate. If a call has
been made before, answers are retrieved from the extension table instead of
being recomputed. Extension tables provide a caching mechanism for Pro-
log. In addition, extension tables affect the termination characteristics of
recursive programs. Some Prolog programs, which are logically correct, en-
ter an infinite loop due to recursive predicates. An extension table saved on
recursive predicates can find all answers (provided the set of such answers is
finite) and terminate for some logic programs for which Prolog’s evaluation
strategy enters an infinite loop. Iterations over the extension table execu-
tion strategy provides complete evaluation of queries over function-free Horn
clause programs.

To be able to use the simple extension table evaluation on a set of pred-
icates, the source file should either be consulted, or compiled with the t
option (the t option keeps the assembler from optimizing subroutine linkage
and allows the extension table facility to intercept calls to predicates).

To use extension table execution, all predicates that are to be saved in
the extension table must be passed to et/1. For example,

| 7- et([predil/1, pred2/2]), et(pred3/2)

will set up “ET-points” for the for predicates pred1/1, pred2/2 and pred3/2,
which will cause extension tables for these predicates to be maintained during
execution. At the time of the call to et/1, these predicates must be defined,
either by having been loaded, or through consult.

The predicate noet/1 takes a list of predicate/arity pairs for which ET-
points should be deleted. Notice that once an ET-point has been set up for
a predicate, it will be maintained unless explicitly deleted via noet/1. If the
definition of a predicate which has an ET-point defined is to be updated,

o7

the ET-point must first be deleted via noet/1. The predicate can then be
reloaded and a new ET-point established. This is enforced by the failure of
the goal “et(P/N)” if an ET-point already exists for the argument predicate.
In this case, the following error message will be displayed:

et already defined for: P/N

There are, in fact, two extension table algorithms: a simple one, which
simply caches calls to predicates which have ET-points defined; and a com-
plete ET algorithm, which iterates the simple extension table algorithm until
no more answers can be found. The simple algorithm is more efficient than
the complete one; however, the simple algorithm is not complete for certain
especially nasty forms of mutual recursion, while the complete algorithm is.
To use the simple extension table algorithm, predicates can simply be called
as usual. The complete extension table algorithm may be used via the query

| ?- et_star(Query).

The extension table algorithm is intended for predicates that are “essen-
tially pure”, and results are not guaranteed for code using impure code. The
extension table algorithm saves only those answers which are not instances
of what is already in the table, and uses these answers if the current call is an
instance of a call already made. For example, if a call p(X, V), with X and
Y uninstantiated, is encountered and inserted into the extension table, then
a subsequent call p(X, b) will be computed using the answers for p(X, Y)
already in the extension table. Notice that this might not work if var/nonvar
tests are used on the second argument in the evaluation of p.

Another problem with using impure code is that if an ET predicate is
cut over, then the saved call implies that all answers for that predicate were
computed, but there are only partial results in the ET because of the cut. So
on a subsequent call the incomplete extension table answers are used when
all answers are expected. An example is shown in Figure 11

rX,Y) :- p(X,V),q(¥,2),!,fail.
| »- r(X,Y) ; p(X,V).

Figure 3: Extension Table Example

Let p be an ET predicate whose evaluation yields many tuples. In the
evaluation of the query, r(X,Y) makes a call to p(X,Y). Assuming that there

o8

is a tuple such that q(Y,Z) succeeds with the first p tuple then the evaluation
of p is cut over. The call to p(X,Y) in the query uses the extension table
because of the previous call in the evaluation of r(X,Y). Only one answer
is found, whereas the relation p contains many tuples, so the computation
is not complete. Note that “cuts” used within the evaluation of an ET
predicate are ok, as long as they don’t cut over the evaluation of another ET
predicate. The evaluation of the predicate that uses cuts does not cut over
any ET processing (such as storing or retrieving answers) so that the tuples
that are computed are saved. In the following example, the ET is used to
generate prime numbers where an ET point is put on prime/1. Example:

prime(I) :- globalset(globalgenint(2)),fail. /* Generating Primes */
prime(I) :- genint(I), not(div(I)).
div(I) :- prime(X), O is I mod X.

genint (N) :-

repeat,

globalgenint (N),

N1 is N+1,

globalset (globalgenint (N1)).

The following summarizes the library predicates supporting the extension
table facility:

et(L) Sets up an ET-point on the predicates L, which causes calls and
answers to these predicates to be saved in an “extension table”. L
is either a term Pred/Arity, where Pred is a predicate symbol and
Arity its arity, or a set of such terms represented as a list. L must be
instantiated, and the predicates specified in it defined, at the time of
the call to et/1. Gives error messages and fails if any of the predicates
in L is undefined, or if an ET-point already exists on any of them; in
this case, no ET-point is set up on any of the predicates in L.

et_star(Goal) Invokes the complete extension table algorithm on the goal
Goal.

et_points(L) Unifies L with a list of predicates for which an ET-point is
defined. L is the empty list [] if there are no ET-points defined.

99

noet(L) Deletes ET-points on the predicates specified in L. L is either a
term P/N, where P is the name of a predicate and N its arity, or a
set of such terms represented as a list. Gives error messages and fails if
there is no ET-point on any of the predicates specified in L. Deleting
an ET-point for a predicate also removes the calls and answers stored
in the extension table for that predicate. The extension tables for
all predicates for which ET-points are defined may be deleted using
et_points/1 in conjunction with noet/1.

L must be instantiated at the time of the call to noet/1.

et_remove(L) Removes both calls and answers for the predicates specified
in L. In effect, this results in the extension table for these predicates
to be set to empty. L must be instantiated at the time of the call to
either a term P/N, where P is a predicate with arity N, or a list of
such terms. An error occurs if any of the predicates in L does not have
an ET-point set.

All extension tables can be emptied by using et_points/1 in conjunction
with et_remove/1.

et_answers(P/N, Term) Retrieves the answers stored in the extension ta-
ble for the predicate P/N in Term one at a time. Term is of the form
P(ty,...,ty). An error results and et_answers/2 fails if P/N is not
fully specified (ground), or if P/N does not have an ET-point set.

et_calls(P/N, Term) Retrieves the calls stored in the extension table for
the predicate P/N in Term one at a time. Term is of the form
P(ty,...,ty). An error results and et_calls/2 fails if P/N is not fully
specified (ground), or if P/N does not have an ET-point set.

12 Definite Clause Grammars

Definite clause grammars are an extension of context free grammars, and
may be conveniently expressed in Prolog. A grammar rule in Prolog has the
form

Head —--> Body.

with the interpretation “a possible form for Head is Body”. Extra conditions,
in the form of explicit Prolog literals or control constructs such as if-then-else
(=>) or cut ('), may be included in Body.

60

The syntax of DCGs supported by SB-Prolog is as follows:

1.

2.

A non-terminal symbol may be any Prolog term other than a variable.

A terminal symbol may be any Prolog term. To distinguish terminals
from nonterminals, a sequence of terminal symbols

a,b,c,d,...

is written as a Prolog list [a, b, ¢, d, . ..], with the empty sequence writ-
ten as the empty list []. If the terminal symbols are ASCII character
codes, they can be written (as elsewhere) as strings.

Extra conditions, in the form of Prolog literals, can be included in the
right-hand side of a rule by enclosing such conditions in curly braces,
{ and }. E.g., one can write

natnum(X) --> {integer(X), X >= 0}.

The left hand side of a rule consists of a single nonterminal. Notice
that “push-back lists” are thus not supported.

The right hand side of a rule may contain alternatives (written using
the disjunction operator ‘;” or |), and control primitives such as if-then-
else (->), not/1 and cut (‘!"). The use of not/1 on the right hand side of
grammar rules is not recommended, however, because their semantics
in this context is murky at best. All other control primitives, e.g.
repeat/0, must explicitly be enclosed within curly braces if they are
not to be interpreted as nonterminals.

Except for the restriction of lists of terminals in the left hand sides of

rules, the translation of DCGs in SB-Prolog is very similar to that in Quintus
Prolog.

Library predicates supporting DCGs are the following:

dcg(Rule, Clause) Succeeds if the DCG rule Rule corresponds to the Pro-

log clause Clause. At the time of call, Rule must be bound to a term
whose principal functor is ->/2.

phrase(Phrase, List) The usual way to commence execution of grammar

rules. The list List is a phrase (i.e., sequence of terminals) generated

61

by Phrase according to the current grammar rules. Phrase is a non-
terminal (in general, the right hand side of a grammar rule), and must
be instantiated to a nonvariable term in the call. If List is bound to
a list of terminals in the call, then the goal corresponds to parsing
List; if List is unbound in the call, then the grammar is being used for
generation.

expand_term(7T1, T2) This predicate is used to transform terms that are
read in, when a file is consulted or compiled. The usual use is to trans-
form grammar rules into Prolog clauses: if T is a grammar rule, then
T2 is the corresponding Prolog clause. Users may define their own
transformations by defining the predicate term_expansion/2. When
a term 77 is read in when a file is being compiled or consulted, ez-
pand_term/2 first calls term_ezpansion/2: if the expansion succeeds,
the transformed term so obtained is used; otherwise, if T1 is a gram-
mar rule, then it is expanded using dcg/2; otherwise, T1 is used as
is.

‘C’(S1, Terminal, S2) Used to handle terminal symbols in the expansion
of grammar rules. Not usually of direct use to the user. This is defined
as

‘¢’ ([xI8], X, S).

13 Profiling Programs

There is an experimental utility for profiling programs interactively. Two
kinds of profiling are supported: one may count the number of calls to a
predicate, or compute the time spent in a predicate. It is important that the
predicates being profiled are either consulted, or compiled with the t option,
so that calls to the relevant predicates can be intercepted by the profiler.

To use the profiler, predicates whose calls are to be counted must be
passed to count/1, e.g.

| ?-- count([p/1, ¢/2]), count(r/3).

will set up “count-points” on the predicates p/1, ¢/2 and r/3. Predicates
whose calls are to be timed have to be passed to time/1, e.g.

| ?-- time([s/1, t/2]1), time(u/3).

62

will set up “time-points” on the predicates s/1, ¢/2 and u/3. It is possi-
ble to set both count-points and time-points on the same predicate. After
count-points and time-points have been set, the program may be executed as
many times as desired: the profiling system will accumulate call counts and
execution times for the appropriate predicates. Execution profiles may be
obtained using the predicates prof_stats/0 or prof_stats/1. Using prof_stats/0
to display the execution profile will cause the call counts and execution times
of predicates being profiled to be reset to 0 (this may be avoided by using
prof_stats/1).

It should be noted that in this context, the “execution time” for a predi-
cate is an estimate of the total time spent in the subtrees below calls to that
predicate (including failed subtrees): thus, the execution time figures may
be dilated slightly if the subtree below a timed predicate contains predicates
that are being profiled, because of the time taken for updating the call counts
and execution times. For each predicate, the execution time is displayed as
the fraction of time spent, in computation in subtrees under calls to that
predicate, relative to the time elapsed from the last time profiling was timed
on or the last time profiling statistics were taken, whichever was more recent.

Bugs: May behave bizarrely if a predicate being profiled contains cuts.

The following summarizes the library predicates supporting profiling:

count(L) Sets up a count-point on the predicates L, which causes calls to
these predicates to be counted, and turns profiling on. L is either a
term Pred/ Arity, where Pred is a predicate symbol and Arity its arity,
or a set of such terms represented as a list. L must be instantiated, and
the predicates specified in it defined, at the time of the call to count/1.

time(L) Sets up a time-point on the predicates L, which causes execution
times for calls to these predicates to be accumulated, and turns profil-
ing on. L is either a term Pred/Arity, where Pred is a predicate symbol
and Arity its arity, or a set of such terms represented as a list. L must
be instantiated, and the predicates specified in it defined, at the time
of the call to time/1.

nocount(L) Deletes the count-point on the predicates L. L is either a term
Pred/ Arity, where Pred is a predicate symbol and Arity its arity, or a
set of such terms represented as a list. L must be instantiated, and the
predicates specified in it defined, at the time of the call to nocount/1.

notime(L) Deletes the time-point on the predicates L. L is either a term
Pred/ Arity, where Pred is a predicate symbol and Arity its arity, or a

63

set of such terms represented as a list. L must be instantiated, and the
predicates specified in it defined, at the time of the call to time/1.

profiling Displays information about whether profile mode is on or not, and
lists predicates that have count- and time-points set on them.

prof_reset(L) Resets call counts and/or execution times for the predicates
L. L is either a term Pred/ Arity, where Pred is a predicate symbol and
Arity its arity, or a set of such terms represented as a list. L must be
instantiated, and the predicates specified in it defined, at the time of
the call to prof_reset/1.

resetcount(L) Resets call counts for the predicates L. L is either a term
Pred/ Arity, where Pred is a predicate symbol and Arity its arity, or a
set of such terms represented as a list. L must be instantiated, and the
predicates specified in it defined, at the time of the call to resetcount/1.

resettime(L) Resets execution times for the predicates L. L is either a
term Pred/ Arity, where Pred is a predicate symbol and Arity its arity,
or a set of such terms represented as a list. L must be instantiated,
and the predicates specified in it defined, at the time of the call to
resettime/1.

profile Turns profiling on. This causes subsequent execution of predicates
with count- or time-points to be profiled, and is a no-op if there are no
such predicates. The predicates count/1 and time/1 cause profiling to
be turned on automatically.

noprofile Turns profiling off. This causes count- and time-points to be
ignored.

timepreds(L) Unifies L to a list of terms P/N where the predicate P of
arity N has a time point set on it.

countpreds(Z) Unifies L to a list of terms P/N where the predicate P of
arity N has a count point set on it.

prof_stats Causes the call counts and/or execution times accumulated since
the last call to prof_stats/0 to be printed out for predicates that are
being profiled. The execution times are given as fractions of the total
time elapsed since the last time profiling was turned on, or the last time
prof-_stats was called, whichever was most recent. This also results in

64

the call counts and relative execution times of these predicates being
reset to 0. Equivalent to prof_stats(1).

prof_stats(/N) Causes the call counts and/or execution times accumulated
since the last call to prof_stats/0 to be printed out for predicates that
are being profiled. The execution times are given as fractions of the
total time elapsed since the last time profiling was turned on, or the
last time prof_stats was called, whichever was most recent. If N is 1,
then this also results in the call counts and execution times of these
predicates being reset to 0; otherwise, the call counts and execution
times are not reset.

14 Other Library Utilities

The SB-Prolog library contains various other utilities, some of which are
listed below.

$append (X, Y, Z) Succeeds if list Z is the concatenation of lists X and
Y.

$member(X, L) Checks whether X unifies with any element of list L, suc-
ceeding more than once if there are multiple such elements.

$memberchk (X, L) Similar to $member/2, except that $memberchk/2 is
deterministic, i.e. does not succeed more than once for any call.

$reverse(L, R) Succeeds if R is the reverse of list L. If L is not a fully
determined list, i.e. if the tail of L is a variable, this predicate can
succeed arbitrarily many times.

$merge(X, Y, Z) Succeeds if Z is the list resulting from “merging” lists
X and Y, i.e. the elements of X together with any element of Y not
occurring in X. If X or Y contain duplicates, Z may also contain
duplicates.

$absmember(X, L) Similar to $member/2, except that it checks for iden-
tity (through ==/2) rather than unifiability (through =/2) of X with
elements of L.

$nthmember(X, L, N) Succeeds if the N element of the list L unifies
with X. Fails if N is greater than the length of L. Either X and L, or
L and N, should be instantiated at the time of the call.

65

$member2(X, L) Checks whether X unifies with any of the actual ele-
ments of L. The only difference between this and $member/2 is on lists
with a variable tail, e.g. [a, b, ¢ | _ 1: while $member/2 would in-
sert X at the end of such a list if it did not find it, $member2/2 only
checks for membership but does not insert it into the list if it is not
there.

length(L, N) Succeeds if the length of the list L is N. This predicate
is deterministic if L is instantiated to a list of definite length, but is
nondeterministic if L is a variable or has a variable tail.

subsumes(X, Y) Succeeds if the term X subsumes the term YV (i.e. if Y is
an instance of X).

15 CREDITS

The initial development of SB-Prolog, from 1984 to August 1986, was at
SUNY at Stony Brook, where Versions 1.0 and 2.0 were developed. Since
August 1986, its development has continued at the University of Arizona,
Tucson.

A large number of people were involved, at some time or another, with
the Logic Programming group at SUNY, Stony Brook, and deserve credit
for helping to bring SB-Prolog to its present form. David Scott Warren led
the project at Stony Brook. Most of the simulator and builtins were written
by Jiyang Xu and David S. Warren (I added the later stuff, Versions 2.1
onwards). Much of the library was also by David, with some contributions
from me. Weidong Chen did the work on clause indexing. Suzanne Dietrich
wrote the Extension Table package. I wrote most of the compiler.

Several people helped debug previous versions, including Leslie Rohde;
Bob Beck of Sequent Computers; and Mark Gooley of the University of
[linois at Urbana-Champaign.

Special thanks are due to Richard O’Keefe, who contributed the Prolog
code for the parser (in the form of the predicates read/1 and read/2), the
C code for the tokenizer, and the code for setof/3 and bagof/3.

I am grateful to Fernando Pereira for permission to use material from
the C-Prolog manual for the descriptions of Prolog syntax and many of the
builtins in this User Manual. Steve Kelem produced the LateX version of
this manual from an earlier troff version.

— S.K.D.

66

Index

1/0, 18, 26, 28, 58, 60, 61, 76

< /2,24

=< /2,24

=\ =/224

> /2,24

>=/2, 24

\=/2, 25

\ == /2,30

A, 29

AJ2, 29

/2, 25

-> /2, 26

- /1,11, 16, 57
—/2, 56

;/2, 25

—./2, 27

—/2, 25

=:=/2, 24
—=/2, 30

?7=/2, 25

< /2,30

=< /2,31

> /2,30

>= /2,31
$absmember/2, 65
$alloc_buff/5, 42
$append/3, 65
$asm/3, 52
$assertf_alloc_t, 43
$current_atom/2, 36
$current_functor/3, 36
$current_predicate/3, 37
$db_add_clref/7, 43
$db_assert_fact/5, 43
$db_call_prref/2, 44
$db_call_prref_s/2, 44

67

db_get_clauses/3, 44
db_new_prref/3, 43
exists/1, 21
getenv/2, 38
member/2, 65
member2/2, 66
memberchk/2, 65
merge/3, 65
$nthmember/3, 65
$reverse/2, 65
$trace/0, 47
$untrace/0, 47
_$interrupt/2, 49
‘C/3, 62

$
$
$
$
$
$
$
$

abolish

/1, 35

/2, 35
abort

trace facility, 45
abort/0, 38, 38
alloc_heap/2, 32
alloc_perm/2, 32
arg/3, 27, 77
arguments

processing all from a term, 77
arithmetic, 22
assembler

options, 52
assembly, 52
assert, 33

/1, 33

/2, 33

/4, 34
assert_union/2, 33
asserta

/1, 33

/2, 33
asserti/2, 33
assertz

/1, 33

/2, 33
atom/1, 26
atomic/1, 27
atoms, 11

backtrack points, 75
bagof/3, 29
behaviour, standard execution, 18
break/0, 38
buffers, 31
builtins, adding, 79
byte code
files, 5-8, 11, 47, 52
compiler, 50
concatenating, 9, 50
loading, 9
overwriting trace points, 45
translator, 7

call/1, 28
call_ref

/2, 42

/3, 42
character 1/0, 22
clause, 17

/2, 34

/3, 35
cmplib, 7, 50
compare/3, 31
comparison of terms, 30
compile

/1, 8

/2, 8

/3, 8

68

/4, 8
Compiler, 50

directives, 52

invoking, 50

options, 51
compiling programs, 8
conlength/2, 28, 32
constants, 11
consult, 8, 10

/1,10

/2,10

options, 10
consulting programs, 10
control, extra, 26
count/1, 63
countpreds/1, 64
cputime/1, 38
Credits, 66
current_atom/1, 36
current_functor/2, 36
current_predicate/2, 37
cut, 18, 26, 28, 58, 6061, 76
cuts and If-Then-Else, 18

database, internal, 35
deg/2, 61
debug/0, 46
debugging, 44

/0, 46
declarations

mode, 52
definite clause grammars, 60
definitions

macros, 56
directives

Compiler, 52

indexing, 54
directories, system, 7
display/1, 21

dynamic loader search path, 6 definite clause, 60

efficiency, coding for, 75 high-level tracing, 44
environmental predicates, 38
erase/1, 36 I/0
et/1, 59 term, 21
et_answers/2, 60 If-Then-Else and cuts, 18
et_calls/2, 60 index/3, 33, 54
et_points/1, 59 indexing, 34
et_remove/1, 60 directives, 54
et_star/1, 59 on floating point, 19
eval/2, 24 input, 20
evaluable predicates, 19, 72 instance/2, 36
executing programs, 8 integer/1, 26
execution behaviour, standard, 18 integers, 11
execution directives, 11 internal database, 35
exotica, 42 interrupts, 49
exp/2, 25 invoking the Compiler, 50
expand_term/2, 62 invoking the simulator, 7, 47
extension tables is/2, 24

memo relations, 57 is_buffer/1, 27
fail/0, 26 keysort/2, 31

file handling, 20

findall/3, 29 length/2, 66

libraries, 54

float/1, 27 e)
floatc/3, 24 l?nlflng, dynamic search path, 6
floating point numbers, unification listing

of, 19 /0, 36
floor/2, 24 /1,36
functor/3, 27 load/1, 9 _

loader, dynamic search path, 6

gennum/1, 41 loading byte code files, 9
gensym/2, 42 low-level predicates, 42
get/1, 22 low-level tracing, 47

get0/1, 22
getting started, 6

global values, 41

globalset/1, 41 definition of, 56
7 memo relations

Macro Expander options, 57
macros, 55

grammars

69

extension tables, 57
meta-logical predicates, 26
mode

declarations, 52

values, 53
mode/3, 53
modification of the program, 32

name/2, 28
nl/0, 22
nocount/1, 63
nodebug/0, 46
nodynload/2, 39
noet/1, 60
nonvar/1, 26
noprofile/0, 64
nospy/1, 46

not unifiable, see \=/2
not/1, 26
notime/1, 63
number/1, 27

occurs check
unification without, 18
op/3, 15, 38
operational semantics, 18
operators, 14
options
Compiler, 51
Macro Expander, 57
Simulator, 48
output, 20

path, search, 6
phrase/2, 61
portray_clause/2, 22
portray_term/2, 22
predicate_property/2, 37
predicates

evaluable, 72

70

predicates, environmental, 38
predicates, evaluable, 19
predicates, low-level, 42
predicates, meta-logical, 26
print/1, 21
print_al/2, 22
print_ar/2, 22
prof_reset/1, 64
prof_stats

/0, 64

/1, 65
profile/0, 64
profiling programs, 62
profiling/0, 64
program, state of, 36
put/1, 22

query, 17
query evaluator, 7, 47

read/1, 21
real/1, 26
reconsult, 10
recorda/3, 35
recorded/3, 35
recordz/3, 35
registers

minimizing data movement be-

tween, 77

repeat/0, 26
resetcount/1, 64
resettime/1, 64
restore/1, 38
retract/1, 35
rounding, 23
rule, 17

save/1, 38
search path, 6
see/1, 20

seeing/1, 20
seen/0, 20
semantics, operational, 18
setof/3, 29
sets, 29
SIMPATH, 6, 9
Simulator, 47

options, 48
simulator, invoking, 7, 47
sin/2, 25
sort/2, 31
spy/1, 46
spypreds/1, 47
square/2, 25
standard execution behaviour, 18
starting, 6
state of the program, 36
statistics

/0, 39

/2, 39
strings, 13
structure/1, 27
subsumes/2, 66
symtype/2, 40
syntax, 11
syscall/3, 40
system directories, 7
system/1, 40

tab/1, 22
tell /1, 21
telling/1, 21
term

processing all arguments of, 77

term /0, 21
term_expansion/2, 62
terms, 11

comparison of, 30
testing unifiability, 78

time/1, 63
timepreds/1, 64
told/0, 21
trace
options, 45
trace/1, 44
tracepreds/1, 46
tracing
high-level, 44
low-level, 47
trimbuff/3, 32
true/0, 25

undefined_pred/1, 8
unifiability

testing, 78
unification

floating point numbers, 19

without occurs check, 18
Unix

system calls, 40
untrace/1, 46

var/1, 26

WAM, 5, 19, 49, 52
write/1, 21
writename/1, 21
writeq/1, 21
writeqname/1, 21

A Evaluable Predicates of SB-Prolog

An entry of “B” indicates a builtin predicate, “I” an inline predicate, and “L”
a library predicate. A “P” indicates that the predicate is handled by the pre-
processor during compilation and/or consulting. A “D” denotes a compiler

directive.

1/0 (P), 26 $db_call_prref/2 (L), 44
< /2 (1), 24 $db_call_prref_s/2 (L), 44
=< /2 (1), 24 $db_get_clauses/3 (L), 44
=\ =/2(),24 $db_new_prref/3 (L), 43
> /2 (1), 24 Sexists/1 (B), 21
>=/2 (1), 24 $getenv/2 (L), 38
\ =/2(I), 25 $member/2 (L), 65

== /2 (B), 30 $member2/2 (L), 66
A2 (L), 29 $memberchk/2 (L), 65
/2 (1), 25 $merge/3 (L), 65
-> /2 (P), 26 $nthmember/3 (L), 65
—/1 (P), 11 $reverse/2 (L), 65
:—/2 (P), 56 $trace/0 (L), 47
;/2 (1), 25 $untrace/0 (L), 47
=../2 (L), 27 _$interrupt/2 (L), 49
/2 (1), 25 /3 (L), 62
=:=/2 (), 24
::/2 (B), 30 abolish/l (L), 35
7=/2 (1), 25 abolish/2 (L), 35
< /2 (B), 30 abort/0 (B), 38
=< /2 (B), 31 alloc_heap/2 (L), 32
> /2 (B), 30 alloc_perm/2 (L), 32
>= /2 (B), 31 arg/3 (I), 27

$absmember/2 (L), 65
$alloc_buff/5 (L), 42
$append/3 (L), 65
$asm/3, 52
$assertf_alloc_t (L), 43
$current_atom/2 (L), 36

$current_functor/3 (L), 36
$current_predicate/3 (L), 37

$db_add_clref/7 (L), 43

$db_assert_fact/5 (L), 43

assert/1 (L), 33
assert/2 (L), 33
assert/4 (L), 34
assert_union/2 (L), 33
asserta/1 (L), 33
asserta/2 (L), 33
asserti/2 (L), 33
assertz/1 (L), 33
assertz/2 (L), 33
atom/1 (B), 26

atomic/1 (B), 27

bagof/3 (L), 29
break/0 (L), 38

call/1 (P), 28
call_ref/2 (L), 42
call_ref/3 (L), 42
clause/2 (L), 34
clause/3 (L), 35
compare/3 (B), 31
compile/1 (L
compile/2 (L
compile/3 (L
compile/4 (L
conlength/2 (B), 28
conlength/2 (L), 32
consult/1 (L), 10
consult/2 (L), 10
count/1 (L), 63
countpreds/1 (L), 64
cputime/1 (B), 38
current_atom/1 (L

)

7

)

), 8
), 8
), 8
), 8
(B)
(

36

),
current_functor/2 (L), 36
current_predicate/2 (L), 37

deg/2 (L), 61
debug/0 (L), 46
debugging/0 (L), 46
display/1 (L), 21

erase/1 (L), 36

et/1 (L), 59
et_answers/2 (L), 60
et_calls/2 (L), 60
et_points/1 (L), 59
et_remove/1 (L), 60
et_star/1 (L), 59
eval/2 (L), 24
exp/2 (B), 25

73

expand_term/2 (L), 62

fail/0 (1), 26
findall/3 (L), 29
float/1 (I), 27

floatc/3 (B), 24
floor/2 (B), 24
functor/3 (L), 27

gennum/1 (L), 41
gensym/2 (L), 42
get/1 (B), 22
get0/1 (B), 22
globalset/1 (L), 41

index/3 (D), 54
instance/2 (L), 36
integer/1 (I), 26
is/2 (L), 24
is_buffer/1 (B), 27

keysort/2 (L), 31

6
6
6

length/2 (L), 6
listing/0 (L), 3
listing/1 (L), 3
load/1 (B), 9

mode/3 (D), 53

name/2 (B), 28
nl/0 (B), 22
nocount/1 (L), 63
nodebug/0 (L), 46
nodynload/2 (L), 39
noet/1 (L), 60
nonvar/1 (I), 26
noprofile/0 (L), 64
nospy/1 (L), 46
not/1 (P), 26
notime/1 (L), 63

number/1 (B), 27 statistics/2 (L), 39
structure/1 (B), 27
subsumes/2 (L), 66
symtype/2 (B), 40
syscall/3 (B), 40
system/1 (B), 40

op/3 (L), 15, 38

phrase/2 (L), 61
portray_clause/2 (L), 22
portray_term/2 (L), 22

predicate_property/2 (L), 37 tab/1 (B), 22
pr%nt/l (L), 21 tell/1 (B), 21
print_al/2 (L), 22 telling/1 (B), 21

print_ar/2 (L), 22 term_expansion/2 (U), 62

prof_reset/1 (L), 64 time/1 (L), 63
prof_stats/0 (L), 64 timepreds/1 (L), 64
prof stats/1 (L), 65 told/0 (B), 21
profile/0 (L), 64 trace/1 (L), 44
profiling/0 (L), 64 tracepreds/1 (L), 46
put/1 (B), 22 trimbuff/3 (L), 32
read/1 (B), 21 true/0 (I), 25

real/1 (I), 26 undefined_pred/1 (L), 8
recorda/3 (L), 35 untrace/1 (L), 46
recorded/3 (L), 35

recordz/3 (L), 35 var/1 (I), 26
repeat/0 (L), 26

resetcount/1 (L), 64 write/1 (L), 21
resettime/1 (L), 64 writename/1 (B), 21
restore/1 (B), 38 writeq/1 (L), 21
retract/1 (L), 35 writeqname/1 (B), 21

save/1 (B), 38
see/1 (B), 20
seeing/1 (B), 20
seen/0 (B), 20
setof/3 (L), 29
sin/2 (B), 25
sort/2 (L), 31
spy/1 (L), 46
spypreds/1 (L), 47
square/2 (B), 25
statistics/0 (B), 39

74

B A Note on Coding for Efficiency

The SB-Prolog system tends to favour programs that are relatively pure.
Thus, for example, asserts tend to be quite expensive, encouraging the user
to avoid them if possible. This section points out some syntactic constructs
that lead to the generation of efficient code. These involve (i) avoiding the
creation of backtrack points; and (77) minimizing data movement between
registers. Optimization of logic programs is an area of ongoing research, and
we expect to enhance the capabilities of the system further in future versions.

B.1 Avoiding Creation of Backtrack Points

Since the creation of backtrack points is relatively expensive, program ef-
ficiency may be improved substantially by using constructs that avoid the
creation of backtrack points where possible. The SB-Prolog compiler recog-
nizes conditionals involving certain complementary inline tests, and gen-
erates code that does not create choice points for such cases. Two in-
line tests p(ti,...,t,) and q(t1,...,t,) are complementary if and only if
p(ty,...,t,) = not(q(ty,...,t,)). For example, the literals ‘X > Y’ and
‘X =< Y’ are complementary. At this point, complementary tests are
recognized as such only if their argument tuples are identical. The inline
predicates that are treated in this manner, with their corresponding comple-
mentary literals, are shown in Table B.1. The syntactic constructs recognized

‘ Inline Test ‘ Complementary Test ‘

> /2 =< /2
=< /2 > /2
>=/2 < /2
< /2 >= /2

==/ =\ =]

=\ =P ==/
=2 \ =2
\ =/2 7=/2

var/1 nonvar/1

nonvar/1 var/1

Table 5: Complementary Tests Recognized by the Compiler

are:

75

(i) Disjuncts of the form

head(...): —(test(ty,...,tn),...); (not(test(ty,...,t,),...)).

or

head(...): —(test(ty,...,t,),...); ((comp_test(t,,... t,),...)).

where test is one of the inline tests in the table above, and comp_test

the corresponding complementary test (note that the arguments to test
and comp_test have to be identical).

(73) Conditionals of the form

head: —(testy, ..., test,)— > True_Case; False_Case.

or
head: —(testy;. . .;test,)— > True_Case; False_Case.

where each test; is an inline test, as mentioned in the table above.

The code generated for these cases involves a test and conditional branch,
and no choice point is created. We expect future versions of the translator
to recognize a wider class of complementary tests.

Notice that this discourages the use of explicit cuts. For example, whereas
a choice point will be created for

part (M, [EIL],U1,U2) :-

((E =< M, !, Ul = [E|Ula], U2 = U2a)
(U1l = Utla, U2 = [E|U2al)),

part (M,L,Ula,U2a).

I

no choice point will be created for either

part (M, [EIL],U1,U2) :-
(E=<M -->

(U1 [ElUla]l, U2 = U2a) ;
(UL = Ula, U2 = [E|U2a])),
part(M,L,Ula,U2a).

76

or

part (M, [EIL],U1,U2) :-

((E =< M, UL = [E|Ulal], U2 = U2a) ;
(E>M, Ul = Ula, U2 = [E|U2a])),
part (M,L,Ula,U2a).

Thus, either of the two later versions will be more efficient than the
version with the explicit cut (this is a design decision we have consciously
made, in the hope of discouraging blatantly non-declarative code where effi-
cient declarative code can be written).

B.2 Minimizing Data Movement Between Registers

Data movement between registers for parameter passing may be minimized
by leaving variables in the same argument position wherever possible. Thus,
the clause

pX,Y) :- pl(X,Y,0).
is preferable to
pX,Y) :- pl1(0,X,Y).

because the first definition leaves the variables X and Y in the same argu-
ment positions (first and second, respectively), while the second definition
does not.

B.3 Processing All Arguments of a Term

It is often the case that we wish to process each of the arguments of a term in
turn. For example, to decide whether a compound term is ground, we have
to check that each of its arguments is ground. One possibility is to create a
list of those arguments, and traverse the list processing each element. Using
this approach, a predicate to check for groundness would be

ground(T) :- atomic(T).

ground(T) :- structure(T), T =.. [_ | Args], groundargs(Args).
groundargs([]) .
groundargs([A | ARest]) :-- ground(A), groundargs(ARest).

This is not the most efficient way to process all the arguments of a term,
because it involves the creation of intermediate lists, which is expensive both
in space and time. A much better alternative is to use arg/3 to index into the

7

term and retrieve arguments. Using this approach, the ground/1 predicate

above would be written as
ground(T) :- atomic(T).

ground (T) :- structure(T), functor(T, P, N), groundargs(l, N, T).

groundargs(M, N, T) :-

M=<N ->

(arg(M, T, A), ground(A), M1 is M + 1, groundargs(Mi, N, T)) ;

true.

The second approach is likely to be more efficient than the first in SB-Prolog.
If the arguments of the term do not need to be processed in ascending

order, then it is more efficient to process them in descending order using

arg/3 to access them. For example, the predicate for groundness checking

could be written as
ground (T) :- atomic(T).

ground(T) :- structure(T), functor(T, P, N), groundargs(N, T).
groundargs(M, T) :-

M=:=0->

true ;

(arg(M, T, A), ground(A), M1 is M - 1, groundargs(Mi, T)).

This is even more efficient than the earlier version, because (i) groundargs
needs to have one fewer parameter to be passed to it at each iteration; and
(74) testing “M =:= 0” is simpler and more efficient than checking “M =<
N”, and takes fewer machine instructions.

B.4 Testing Unifiability

Often, it is necessary to check whether or not a term has a particular value.
If we know that the term will be bound to a number, we can use the evaluable
predicates =:=/2 or =\ = /2, as explained earlier. For other values, it may
often be cheaper, in the appropriate circumstances, to use the predicates
?=/2 or \ = /2. For example, consider a predicate p/2 that calls ¢/1 with
its second argument if its first argument unifies with a, and r/1 otherwise.
A naive definition might be

pa, X) =1, qX).

pCY, X) :- r(X).

However, the call to p/2 results in the (temporary) creation of a backtrack
point. A solution that avoids this backtrack point creation is

plY, X) (=Y ?=a -> qX) ; r(X).

78

Of course, if the argument order in p/2 could be reversed in this case, then
data movement would be reduced even further (see above), and the code
would be even more efficient:

pX, ¥Y) (- Y ?=a->qX ; rX).

C Adding Builtins to SB-Prolog

Adding a builtin involves writing the C code for the desired case and in-
stalling it into the simulator. The files in the directory sim/builtin contain
the C code for the builtin predicates supported by the system. The following
procedure is to be followed when adding a builtin to the system:

1. Installing C Code:

(a) Go to the directory sim/builtin.

(b) Look at the #defines in the file builtin.h, and choose a number
N1 (between 0 and 255) which is not in use to be the builtin
number for the new builtin.

(¢) Add to the file builtin.h the line
#define NEWBUILTIN N1

(d) The convention is that the code for builtin will be in a parameter-
less procedure named b_NEWBUILTIN. Modify the file init_branch.c
in the directory sim/builtin by adding these lines:

extern int b_NEWBUILTIN();
and
set_b_inst (NEWBUILTIN, b_NEWBUILTIN);

in the appropriate places.

(e) The builtins are compiled together into one object file, builtin.
Update the file Makefile by appending the name of your object

code file at the end of the line “OBJS = ...” and insert the ap-
propriate commands to compile your C source file, e.g.:
0BJS = [... other file names ...] newbuiltin.o

newbuiltin.o: $(HS)
cc $(CFLAGS) newbuiltin.c

79

()
(g)

Execute the updated make file to create an updated object file
builtin.

Go to the directory sim and execute make to install the new file
builtin.

2. Installing Prolog Code:

Assume that the builtin predicate to be added is newbuiltin/4. The
procedure for installing the Prolog code for this is as follows:

()
(b)

Go to the SB-Prolog system directory 1ib/src, where the Prolog
source for the library routines is kept.

Each builtin definition is of the form
pred(...) := ?_$builtin’ (V).

where N is an integer, the builtin number of pred.

Create a Prolog source file newbuiltin.P (notice correspondence
with the name of the predicate being defined) containing the def-
inition

newbuiltin(A,B,C,D) :-- ’_$builtin’ (N1).

where NI is the builtin number of the predicate newbuiltin, ob-
tained when installing the C code for the builtin (see above).

Compile this Prolog predicate, using the simulator and the com-
pile predicate, into a file newbuiltin (notice correspondence with
the name of the predicate being defined) in the SB-Prolog direc-
tory 1ib.

80

