
The SB-Prolog System, Version 3.0

A User Manual

edited by

Saumya K. Debray

from material by

David Scott Warren

Suzanne Dietrich

SUNY at Stony Brook

Fernando Pereira

SRI International

Department of Computer Science

University of Arizona

Tucson, AZ 85721

September 1988

1

Contents

1 Introdu
tion 5

2 Getting Started 6

2.1 The Dynami
 Loader Sear
h Path : : : : : : : : : : : : : : : 6

2.2 System Dire
tories : 7

2.3 Invoking the Simulator : 7

2.4 Exe
uting Programs : 8

2.4.1 Compiling Programs : : : : : : : : : : : : : : : : : : : 8

2.4.2 Loading Byte Code Files : : : : : : : : : : : : : : : : 9

2.4.3 Consulting Programs : : : : : : : : : : : : : : : : : : : 10

2.5 Exe
ution Dire
tives : 11

3 Syntax 11

3.1 Terms : 11

3.2 Operators : 14

3.3 Clause? : 17

3.4 Rule? : 17

3.5 Query? : 17

4 SB-Prolog: Operational Semanti
s 18

4.1 Standard Exe
ution Behaviour : : : : : : : : : : : : : : : : : 18

4.2 Cuts and If-Then-Else : 18

4.3 Uni�
ation of Floating Point Numbers : : : : : : : : : : : : : 19

5 Evaluable Predi
ates 19

5.1 Input and Output : 20

5.1.1 File Handling : 20

5.1.2 Term I/O : 21

5.1.3 Chara
ter I/O : 22

5.2 Arithmeti
 : 22

5.3 Convenien
e : 25

5.4 Extra Control : 26

5.5 Meta-Logi
al : 26

5.6 Sets : 29

5.7 Comparison of Terms : 30

5.8 Bu�ers : 31

5.9 Modi�
ation of the Program : : : : : : : : : : : : : : : : : : : 32

2

5.10 Internal Database : 35

5.11 Information about the State of the Program : : : : : : : : : : 36

5.12 Environmental : 38

5.13 Global Values : 41

5.14 Exoti
a : 42

6 Debugging 44

6.1 High-Level Tra
ing : 44

6.2 Low-Level Tra
ing : 47

7 The Simulator 47

7.1 Invoking the Simulator : 47

7.2 Simulator Options : 48

7.3 Interrupts : 49

8 The Compiler 50

8.1 Invoking the Compiler : 50

8.2 Compiler Options : 51

8.3 Assembly : 52

8.4 Compiler Dire
tives : 52

8.4.1 Mode De
larations : 52

8.4.2 Indexing Dire
tives : 54

9 Libraries 54

10 Ma
ros 55

10.1 De�ning Ma
ros : 56

10.2 Ma
ro Expander Options : 57

11 Extension Tables: Memo Relations 57

12 De�nite Clause Grammars 60

13 Pro�ling Programs 62

14 Other Library Utilities 65

15 CREDITS 66

A Evaluable Predi
ates of SB-Prolog 72

3

B A Note on Coding for EÆ
ien
y 75

B.1 Avoiding Creation of Ba
ktra
k Points : : : : : : : : : : : : : 75

B.2 Minimizing Data Movement Between Registers : : : : : : : : 77

B.3 Pro
essing All Arguments of a Term : : : : : : : : : : : : : : 77

B.4 Testing Uni�ability : 78

C Adding Builtins to SB-Prolog 79

List of Figures

1 Stru
ture for the Fun
tion .(1,.(2,.(3,[℄))) : : : : : : : : 13

2 Stru
tures for the Fun
tions [X|L℄ and [a,b|L : : : : : : : : 14

3 Extension Table Example : 58

List of Tables

1 Operator Priorities : 16

2 Inline Predi
ates of SB-Prolog : : : : : : : : : : : : : : : : : : 20

3 Run Time Statisti
s Predi
ates : : : : : : : : : : : : : : : : : 39

4 Sys
all Numbers for Some Unix Systems Calls : : : : : : : : : 41

5 Complementary Tests Re
ognized by the Compiler : : : : : : 75

4

Abstract

SB-Prolog is a Prolog system for Unix1-based systems. The core

of the system is an emulator, written in C for portability, of a Prolog

virtual machine that is an extension of the Warren Abstract Machine.

The remainder of the system, including the translator from Prolog to

the virtual machine instructions, is written in Prolog. Parts of this

manual, specifically the sections on Prolog syntax and descriptions

of some of the builtins, are based on the C-Prolog User Manual by

Fernando Pereira.

1 Introdu
tion

SB-Prolog is a Prolog system based on an extension of the Warren Abstra
t

Ma
hine

2
. The WAM simulator is written in C to enhan
e portability. Prolog

sour
e programs
an be
ompiled into byte
ode �les, whi
h
ontain en
odings

of WAM instru
tions and are interpreted by the simulator. Programs
an

also be interpreted via
onsult.

SB-Prolog o�ers several features that are not found on most Prolog sys-

tems
urrently available. These in
lude:
ompilation to obje
t �les; dynami

loading of predi
ates; provision for generating exe
utable
ode on the global

sta
k, whi
h
an be later be re
laimed; an extension table fa
ility that per-

mits memoization of relations. Other features in
lude full integration be-

tween
ompiled and interpreted
ode, and a fa
ility for the de�nition and

expansion of ma
ros that is fully
ompatible with the runtime system.

The system in
orporates tail re
ursion optimization, and performs
lause

indexing in both
ompiled and interpreted
ode. However, there is no garbage

olle
tor for the global sta
k. This may be in
orporated into a later version.

One of the few luxuries a�orded to a person giving software away for free

is the ability to take philosophi
al stan
es without hurting his wallet. Based

on our faith in the \de
larative ideal", viz. that pure programs with de
lar-

ative readings are Good, we have attempted to en
ourage, where possible,

a more de
larative style of programming. To this end, we have deliberately

hosen to not reward programs
ontaining
uts in some situations where

more de
larative
ode is possible (see Appendix B). We have also resisted

the temptation to make assert less expensive. We hope this will help promote

a better programming style.

1Unix is a trademark of AT&T.
2D. H. D. Warren, “An Abstract Prolog Instruction Set”, Tech. Note 309, SRI Inter-

national, 1983.

5

2 Getting Started

This se
tion is intended to give a broad overview of the SB-Prolog system,

so as to enable the new user to begin using the system with a minimum of

delay. Many of the topi
s tou
hed on here are
overed in greater depth in

later se
tions.

2.1 The Dynamic Loader Search Path

In SB-Prolog, it is not ne
essary for the user to load all the predi
ates ne
-

essary to exe
ute a program. Instead, if an unde�ned predi
ate foo is en-

ountered during exe
ution, the system sear
hes the user's dire
tories in the

order spe
i�ed by the environment variable SIMPATH until it �nds a dire
-

tory
ontaining a �le foo whose name is that of the unde�ned predi
ate.

It then dynami
ally loads and links the �le foo (whi
h is expe
ted to be a

byte
ode �le de�ning the predi
ate foo), and
ontinues with exe
ution; if no

su
h �le
an be found, an error message is given and exe
ution fails. This

feature makes it unne
essary for the user to have to expli
itly link in all

the predi
ates that might be ne
essary in a program: instead, only those

�les are loaded whi
h are ne
essary to have the program exe
ute. This
an

signi�
antly redu
e the memory requirements of programs.

The key to this dynami
 sear
h-and-load behaviour is the SIMPATH

environment variable, whi
h spe
i�es the order in whi
h dire
tories are to be

sear
hed. It may be set by adding the following line to the user's .
shr
 �le:

setenv SIMPATH path

where path is a sequen
e of dire
tory names separated by
olons:

dir1:dir2: : : : : dirn

and diri are full path names to the respe
tive dire
tories. For example,

exe
uting the
ommand

setenv SIMPATH .:$HOME/prolog/modlib:$HOME/prolog/lib

sets the sear
h order for unde�ned predi
ates to the following: �rst, the

dire
tory in whi
h the program is exe
uting is sear
hed; if the appropriate

�le is not found in this dire
tory, the dire
tories sear
hed are, in order,

~

/prolog/modlib and ~/prolog/lib. If the appropriate �le is not found in

any of these dire
tories, the system gives an error message and exe
ution

fails.

6

The beginning user is advised to in
lude the system dire
tories (listed in

the next se
tion) in his SIMPATH, in order to be able to a

ess the system

libraries (see below).

2.2 System Directories

There are four basi
 system dire
tories:
mplib, lib, modlib and sim.

mplib
ontains the Prolog to byte
ode translator; lib and modlib
on-

tain library routines. The sr
 subdire
tory in ea
h of these
ontains the

orresponding Prolog sour
e programs. The dire
tory sim
ontains the sim-

ulator, the subdire
tory builtin
ontains
ode for the builtin predi
ates of

the system.

It is re
ommended that the beginning user in
lude the system dire
tories

in his SIMPATH, by setting SIMPATH to

.:SBP/modlib:SBP/lib:SBP/
mplib

where SBP denotes the path to the root of the SB-Prolog system dire
tories.

2.3 Invoking the Simulator

The simulator is invoked by the
ommand

sbprolog b
 file where b
 �le

is a byte
ode �le resulting from the
ompilation of a Prolog program. In

almost all
ases, the user will wish to intera
t with the SB-Prolog query

evaluator, in whi
h
ase b
 �le will be $readloop, and the
ommand will be

sbprolog Path/$readloop

where Path is the path to the dire
tory
ontaining the
ommand interpreter

$readloop. This dire
tory, typi
ally, is modlib (see Se
tion 2.2 above).

The
ommand interpreter reads in a query typed in by the user, evaluates

it and prints the answer(s), repeating this until it en
ounters an end-of-�le

(the standard end-of-�le
hara
ter on the system, e.g.
trl-D), or the user

types in end of �le or halt.

The user should ensure that the the dire
tory
ontaining the exe
utable

�le sim (typi
ally, the system dire
tory sim: see Se
tion 2.2 above). is

in
luded in the shell variable path; if not, the full path to the simulator will

have to be spe
i�ed.

In general, the simulator may be invoked with a variety of options, as

follows:

7

sbprolog -options b
 file

or

sbprolog -option1 -option2 : : : -optionn b
 file

The options re
ognized by the simulator are des
ribed in Se
tion 4.2.

When
alled with a byte
ode �le b
 �le, the simulator begins exe
ution

with the �rst
lause in that �le. The �rst
lause in su
h a �le, therefore,

should be a
lause without any arguments in the head (otherwise, the sim-

ulator will attempt to dereferen
e argument pointers in the head that are

really pointing into deep spa
e, and usually
ome to a sad end). If the user is

exe
uting a �le in this manner rather than using the
ommand interpreter, he

should also be
areful to in
lude the unde�ned predi
ate handler,
onsisting

of the predi
ates ` $interrupt/2 and ` $unde�ned pred'/1, whi
h is normally

de�ned in the �les modlib/sr
/$init sys.P and modlib/sr
/$readloop.

2.4 Executing Programs

There are two ways of exe
uting a program: a sour
e �le may be
ompiled

into a byte-
ode �le, whi
h
an then be loaded and exe
uted; or, the sour
e

�le may be interpreted via
onsult. The system supports full integration of

ompiled and interpreted
ode, so that some predi
ates of a program may be

ompiled, while others may be interpreted. However, the unit of
ompilation

or
onsulting remains the �le. The remainder of this se
tion des
ribes ea
h

of these pro
edures in more detail.

2.4.1 Compiling Programs

The
ompiler is invoked through the Prolog predi
ate
ompile. It translates

Prolog sour
e programs into byte
ode that
an then be exe
uted on the

simulator. The
ompiler may be invoked as follows:

| ?-
ompile(InFile [, OutFile ℄ [, OptionsList ℄).

or

| ?-
ompile(InFile, OutFile, OptionsList, PredList).

where optional parameters are en
losed in bra
kets. InFile is the name

of the input (i.e. sour
e) �le; OutFile is the name of the output �le (i.e. byte

ode) �le; OptionsList is a list of
ompiler options, and PredList is a list of

8

terms P=N denoting the predi
ates de�ned in InFile, where P is a predi
ate

name and N its arity.

The input and output �le names must be Prolog atoms, i.e. either begin

with a lower
ase letter and
onsist only of letters, digits, dollar signs and

unders
ores; or, be en
losed within single quotes. If the output �le name is

not spe
i�ed, it defaults to InFile.out. The list of options, if spe
i�ed, is a

Prolog list, i.e. a term of the form

[option1, option2, : : :, optionn ℄.

If left unspe
i�ed, it defaults to the empty list [℄. PredList, if spe
i�ed,

is usually given as an uninstantiated variable; its prin
ipal use is for setting

tra
e points on the predi
ates in the �le (see Se
tions 6 and 8). Noti
e that

PredList
an only appear in
ompile/4.

A list of
ompiler options appears in Se
tion 8.2.

2.4.2 Loading Byte Code Files

Byte
ode �les may be loaded into the simulator using the predi
ate load:

| ?- load(ByteCode File).

where ByteCode File is a Prolog atom (see Se
tion 3.1) that is the name

of a byte
ode �le.

The load predi
ate invokes the dynami
 loader, whi
h
arries out a sear
h

a

ording to the sequen
e spe
i�ed by the environment variable SIMPATH (see

Se
tion 2.1). It is therefore not ne
essary to always spe
ify the full path name

to the �le to be loaded.

Byte
ode �les may be
on
atenated together to produ
e other byte
ode

�les. Thus, for example, if foo1 and foo2 are byte
ode �les resulting from

the
ompilation of two Prolog sour
e programs, then the �le foo, obtained

by exe
uting the shell
ommand

at foo1 foo2 > foo

is a byte
ode �le as well, and may be loaded and exe
uted. In this
ase,

loading and exe
uting the �le foo would give the same result as loading

foo1 and foo2 separately, whi
h in turn would be the same as
on
atenating

the original sour
e �les and
ompiling this larger �le. This makes it easier

to
ompile large programs: one need only break them into smaller pie
es,

ompile the individual pie
es, and
on
atenate the resulting byte
ode �les

together.

9

2.4.3 Consulting Programs

Instead of
ompiling a �le to generate a byte
ode �le whi
h then has to

be loaded, a program may be exe
uted interpretively by \
onsulting" the

orresponding sour
e �le:

| ?-
onsult(Sour
eFile [, OptionList ℄).

or

| ?-
onsult(Sour
eFile, OptionList, PredList).

where Sour
eFile is a Prolog atom whi
h is the name of a �le
ontaining a

Prolog sour
e program; OptionList is a list of options to
onsult; and PredList

is a list of terms P/N , where P is a predi
ate name and N its arity, spe
ifying

whi
h predi
ates have been
onsulted from Sour
eFile; its prin
ipal use is for

setting tra
e points on the predi
ates in the �le (see Se
tion 6). Noti
e that

PredList
an only appear in
onsult/3.

At this point, the options re
ognized for
onsult are the following:

t \tra
e". Causes a tra
e point to be set on any predi
ate in the
urrent �le

that does not already have a tra
e point set.

v \verbose". Causes information regarding whi
h predi
ates have been
on-

sulted to be printed out. Default: o�.

In addition to the above, options for the ma
ro expander are also re
og-

nized (see Se
tion 10)).

onsult will
reate an index on the prin
ipal fun
tor of the �rst argument

of the predi
ates being
onsulted, unless this is
hanged using the index/3

dire
tive. In parti
ular, note that if no index is desired on a predi
ate foo/n,

then the dire
tive

:- index(foo, n, 0).

should be given.

It is important to note that SB-Prolog's
onsult predi
ate is similar to

that of Quintus Prolog, and behaves like C-Prolog's re
onsult. This means

that if a predi
ate is de�ned a
ross two or more �les,
onsulting them will

result in only the
lauses in the �le
onsulted last being used.

10

2.5 Execution Directives

Exe
ution dire
tives may be spe
i�ed to
ompile and
onsult through :{/1.

If, in the read phase of
ompile or
onsult, a term with prin
ipal fun
tor

:{/1 is read in, this term is exe
uted dire
tly via
all/1. This enables the

user to dynami
ally modify the environment, e.g. via op de
larations (see

Se
tion 3.2), asserts et
.

A point to note is that if the environment is modi�ed as a result of an

exe
ution dire
tive, the modi�
ations are visible only in that environment.

This means that
onsulted
ode, whi
h runs in the environment in whi
h the

sour
e program is read (and whi
h is modi�ed by su
h exe
ution dire
tives)

feel the e�e
ts of su
h exe
ution dire
tives. However, byte
ode resulting

from
ompilation, whi
h, in general, exe
utes in an environment di�erent

from that in whi
h the sour
e was
ompiled, does not inherit the e�e
ts of

su
h dire
tives. Thus, an op de
laration
an be used in a sour
e �le to
hange

the syntax and allow the remainder of the program to be parsed a

ording

to the modi�ed syntax; however, these modi�
ations will not, in general,

manifest themselves if the byte
ode is exe
uted in another environment. Of

ourse, if the byte
ode is loaded into the same environment as that in whi
h

the sour
e program was
ompiled, e.g. through

| ?-
ompile(foo, bar), load(bar).

the e�e
ts of exe
ution dire
tives will
ontinue to be felt.

3 Syntax

3.1 Terms

The syntax of SB-Prolog is by and large
ompatible with that of C-Prolog.

The data obje
ts of the language are
alled terms. A term is either a
onstant,

a variable or a
ompound term. Constants
an be integers or atoms. The

symbol for an atom must begin with a lower
ase letter or the dollar sign

$, and
onsist of any number of letters, digits, unders
ores and dollar signs;

if it
ontains any
hara
ter other than these, it must be en
losed within

single quotes.

3
As in other programming languages,
onstants are de�nite

elementary obje
ts.

3Users are advised against using symbols beginning with ‘$’ or ‘ $’, however, in order

to minimize the possibility of conflicts with symbols internal to the system.

11

Variables are distinguished by an initial
apital letter or by the initial

hara
ter \ " for example

X Value A A1 3 RESULT result

If a variable is only referred to on
e, it does not need to be named and may

be written as an anonymous variable, indi
ated by the underline
hara
ter

.

A variable should be thought of as standing for some de�nite but uniden-

ti�ed obje
t. A variable is not simply a writable storage lo
ation as in most

programming languages; rather it is a lo
al name for some data obje
t,
f.

the variable of pure LISP and
onstant de
larations in Pas
al.

The stru
tured data obje
ts of the language are the
ompound terms.

A
ompound term
omprises a fun
tor (
alled the prin
ipal fun
tor of the

term) and a sequen
e of one or more terms
alled arguments. A fun
tor

is
hara
terized by its name, whi
h is an atom, and its arity or number of

arguments. For example the
ompound term whose fun
tor is named `point'

of arity 3, with arguments X, Y and Z, is written

point(X,Y,Z)

An atom is
onsidered to be a fun
tor of arity 0.

A fun
tor or predi
ate symbol is uniquely identi�ed by its name and arity

(in other words, it is possible for di�erent symbols having di�erent arities

to share the same name). A fun
tor or predi
ate symbol p with arity n is

usually written p/n.

One may think of a fun
tor as a re
ord type and the arguments of a

ompound term as the �elds of a re
ord. Compound terms are usefully

pi
tured as trees. For example, the term

s(np(john),vp(v(likes),np(mary)))

would be pi
tured as the stru
ture

s

/ \

np vp

| / \

john v np

| |

likes mary

12

Sometimes it is
onvenient to write
ertain fun
tors as operators | 2-ary

fun
tors may be de
lared as in�x operators and 1-ary fun
tors as pre�x or

post�x operators. Thus it is possible to write

X+Y (P;Q) X<Y +X P;

as optional alternatives to

+(X,Y) ;(P,Q) <(X,Y) +(X) ;(P)

Operators are des
ribed fully in the next se
tion.

Lists form an important
lass of data stru
tures in Prolog. They are

essentially the same as the lists of LISP: a list either is the atom [℄, repre-

senting the empty list, or is a
ompound term with fun
tor `.'/2 and two

arguments whi
h are respe
tively the head and tail of the list. Thus a list

of the �rst three natural numbers is the stru
ture (shown in Figure 1) whi
h

ould be written, using the standard syntax, as .(1,.(2,.(3,[℄))), but

.

/ \

1 .

/ \

2 .

/ \

3 [℄

Figure 1: Stru
ture for the Fun
tion .(1,.(2,.(3,[℄)))

whi
h is normally written, in a spe
ial list notation, as [1,2,3℄. The spe
ial

list notation in the
ase when the tail of a list is a variable is exempli�ed by

[X|L℄ [a,b|L℄

representing the stru
tures shown in Figure 2 respe
tively.

Note that this list syntax is only synta
ti
 sugar for terms of the form `.'(,

) and does not provide any new fa
ilities that were not available otherwise.

For
onvenien
e, a further notational variant is allowed for lists of integers

whi
h
orrespond to ASCII
hara
ter
odes. Lists written in this notation

are
alled strings. For example, "Prolog" represents exa
tly the same list

as [80,114,111,108,111,103℄.

13

. .

/ \ / \

X L a .

/ \

b L

Figure 2: Stru
tures for the Fun
tions [X|L℄ and [a,b|L

3.2 Operators

Operators in Prolog are simply a notational
onvenien
e. For example, the

expression

2 + 1

ould also be written +(2,1). It should be noti
ed that this expression

represents the stru
ture

+

/ \

2 1

and not the number 3. The addition would only be performed if the stru
ture

was passed as an argument to an appropriate pro
edure (su
h as eval/2 |

see Se
tion 5.2).

The Prolog syntax
aters for operators of three main kinds | in�x, pre�x

and post�x. An in�x operator appears between its two arguments, while a

pre�x operator pre
edes its single argument and a post�x operator is written

after its single argument.

Ea
h operator has a pre
eden
e, whi
h is a number from 1 to 1200. The

pre
eden
e is used to disambiguate expressions where the stru
ture of the

term denoted is not made expli
it through parenthesization. The general

rule is that the operator with the highest pre
eden
e is the prin
ipal fun
tor.

Thus if `+' has a higher pre
eden
e than `/', then a+b/
 and a+(b/
) are

equivalent and denote the term +(a,/(b,
)). Note that the in�x form of

the term /(+(a,b),
) must be written with expli
it parentheses, (a+b)/
.

If there are two operators in the subexpression having the same highest

pre
eden
e, the ambiguity must be resolved from the types of the operators.

The possible types for an in�x operator are

xfx xfy yfx

14

With an operator of type `xfx', it is a requirement that both of the two

subexpressions whi
h are the arguments of the operator must be of lower

pre
eden
e than the operator itself, i.e. their prin
ipal fun
tors must be of

lower pre
eden
e, unless the subexpression is expli
itly bra
keted (whi
h

gives it zero pre
eden
e). With an operator of type `xfy', only the �rst or

left-hand subexpression must be of lower pre
eden
e; the se
ond
an be of

the same pre
eden
e as the main operator; and vi
e versa for an operator of

type `yfx'.

For example, if the operators `+' and `{' both have type `yfx' and are

of the same pre
eden
e, then the expression \a{b+
" is valid, and means

\(a{b)+
", i.e. \+({(a,b),
)". Note that the expression would be invalid if

the operators had type `xfx', and would mean \a{(b+
)", i.e. \{(a,+(b,
))",

if the types were both `xfy'.

The possible types for a pre�x operator are

fx fy

and for a post�x operator they are

xf yf

The meaning of the types should be
lear by analogy with those for in�x

operators. As an example, if `not' were de
lared as a pre�x operator of type

`fy', then

not not P

would be a permissible way to write not(not(P)). If the type were `fx', the

pre
eding expression would not be legal, although

not P

would still be a permissible form for not(P).

In SB-Prolog, a fun
tor named name is de
lared as an operator of type

type and pre
eden
e pre
eden
e by
alling the evaluable predi
ate op:

| ?- op(pre
eden
e, type, name).

The argument name
an also be a list of names of operators of the same type

and pre
eden
e.

It is possible to have more than one operator of the same name, so long

as they are of di�erent kinds, i.e. in�x, pre�x or post�x. An operator of any

kind may be rede�ned by a new de
laration of the same kind. This applies

15

:{ op(1200, xfx, [:{, {> ℄).

:{ op(1200, fx, [:{ ℄).

:{ op(1198, xfx, [::{ ℄).

:{ op(1150, fy, [mode, publi
, dynami
 ℄).

:{ op(1100, xfy, [; ℄).

:{ op(1050, xfy, [{> ℄).

:{ op(1000, xfy, [',' ℄). /* See note below */

:{ op(900, fy, [not, n+, spy, nospy ℄).

:{ op(700, xfx, [=, is, =.., ==, n ==, �<, �>, �=<, �>=,

=:=, = n =, <, >, =<, >=, ?=, n = ℄).

:{ op(661, xfy, [`.' ℄).

:{ op(500, yfx, [+, {, /n, n/ ℄).

:{ op(500, fx, [+, { ℄).

:{ op(400, yfx, [*, /, //, <<, >> ℄).

:{ op(300, xfx, [mod ℄).

:{ op(200, xfy, [^ ℄).

Table 1: Operator Priorities

equally to operators whi
h are provided as standard in SB-Prolog, namely

the ones shown in Table 1.

Operator de
larations are most usefully pla
ed in dire
tives at the top

of your program �les. In this
ase the dire
tive should be a
ommand as

shown above. Another
ommon method of organization is to have one �le

just
ontaining
ommands to de
lare all the ne
essary operators. This �le is

then always
onsulted �rst.

Note that a
omma written literally as a pun
tuation
hara
ter
an be

used as though it were an in�x operator of pre
eden
e 1000 and type `xfy':

X,Y ','(X,Y)

represent the same
ompound term. But note that a
omma written as a

quoted atom is not a standard operator.

Note also that the arguments of a
ompound term written in standard

syntax must be expressions of pre
eden
e below 1000. Thus it is ne
essary

to parenthesize the expression P :{ Q in

assert((P :- Q))

The following syntax restri
tions serve to remove potential ambiguity asso-

iated with pre�x operators.

16

� In a term written in standard syntax, the prin
ipal fun
tor and its

following (must not be separated by any whitespa
e. Thus

point (X,Y,Z)

is invalid syntax (unless point were de
lared as a pre�x operator).

� If the argument of a pre�x operator starts with a (, this (must be

separated from the operator by at least one spa
e or other non-printable

hara
ter. Thus

:-(p;q),r.

(where :-- is the pre�x operator) is invalid syntax, and must be written

as

:- (p;q),r.

� If a pre�x operator is written without an argument, as an ordinary

atom, the atom is treated as an expression of the same pre
eden
e as

the pre�x operator, and must therefore be bra
keted where ne
essary.

Thus the bra
kets are ne
essary in

X = (?-)

3.3 Clause?

The syntax of a
lause is as follows. What the hell IS the syntax for a
lause?

3.4 Rule?

The syntax of a rule is as follows. What the hell IS the syntax for a rule?

3.5 Query?

The syntax of a query is as follows. What the hell IS the syntax for a query?

17

4 SB-Prolog: Operational Semanti
s

4.1 Standard Execution Behaviour

The normal exe
ution behaviour of SB-Prolog follows the usual left to right

order of literals within a
lause, and the textual top to bottom order of
lauses

for a predi
ate. This
orresponds to a depth �rst sear
h of the leftmost

SLD-tree for the program and the given query. Uni�
ation without o

urs

he
k is used, and exe
ution ba
ktra
ks to the most re
ent
hoi
e point when

uni�
ation fails.

4.2 Cuts and If-Then-Else

This standard exe
ution behaviour of SB-Prolog
an be
hanged using
on-

stru
ts like
ut (!) and if-then-else (->). In SB-Prolog,
uts are usually

treated as hard, i.e. dis
ard
hoi
e points of all the literals to the left of the

ut in the
lause
ontaining the
ut being exe
uted, and also the
hoi
e point

for the parent predi
ate, i.e. any remaining
lauses for the predi
ate
ontain-

ing the
ut being exe
uted. There are some situations, however, where the

s
ope of a
ut is restri
ted to be smaller than this. Restri
tions apply under

the following
onditions:

1. The
ut o

urs in a term whi
h has been
onstru
ted at runtime and

alled through
all/1, e.g. in

: : :, X = (p(Y), !, q(Y)), : : :,
all(X), : : :

In this
ase, the s
ope of the
ut is restri
ted to be within the
all,

unless one of the following
ases also apply and serve to restri
t its

s
ope further.

2. The
ut o

urs in a negated goal, or within the s
ope of the test

of an if-then-else (in an if-then-else of the form Test -> TruePart;

FalsePart, the test is the goal Test). In these
ases, the s
ope of the

ut is restri
ted to be within the negation or the test of the if-then-else,

respe
tively.

In
ases involving nested o

urren
es of these situations, the s
ope of

the
ut is restri
ted to that for the deepest su
h nested
onstru
t, i.e. most

restri
ted. For example, in the
onstru
t

18

: : :, not((p(X) -> not((q(X), (r(X) -> s(X) ; (t(X), !,

u(X))))))), : : :

the s
ope of the
ut is restri
ted to the inner negation, and does not a�e
t

any
hoi
e point that may have been set up for p(X).

4.3 Unification of Floating Point Numbers

As far as uni�
ation is
on
erned, no type distin
tion is made between inte-

gers and
oating point numbers, and no expli
it type
onversion is ne
essary

when unifying an integer with a
oat. However, due to the �nite pre
ision

representation of
oating point numbers and
umulative round-o� errors in

oating point arithmeti
,
omparisons involving
oating point numbers may

not always give the expe
ted results. An e�ort is made to minimize surprises

by
onsidering two numbers x and y (at least one of whi
h is a
oat) to be

uni�able if (kxk � kyk)=min(kxk; kyk) to be less than 10

−5
. However, this

does not guarantee immunity against round-o� errors. For the same reason,

users are warned that indexing on predi
ate arguments (see Se
tion 8.4.2)

may not give the expe
ted results if
oating point numbers are involved.

5 Evaluable Predi
ates

This se
tion des
ribes (most of) the evaluable predi
ates provided by SB-

Prolog. These
an be divided into three
lasses: inline predi
ates, builtin

predi
ates and library predi
ates.

Inline predi
ates represent \primitive" operations in the WAM. Calls to

inline predi
ates are
ompiled into a sequen
e of WAM instru
tions in-line,

i.e. without a
tually making a
all to the predi
ate. Thus, for example, re-

lational predi
ates (> =2, >= =2, et
.)
ompile to, essentially, a subtra
tion

and a
onditional bran
h. Inline predi
ates
annot be rede�ned by the user.

Table 2 lists the SB-Prolog inline predi
ates.

Unlike inline predi
ates, builtin predi
ates are implemented by C fun
-

tions in the simulator, and a

essed via the inline predi
ate ` $builtin'/1.

Thus, if a builtin predi
ate foo/3 was de�ned as builtin number 38, there

would be a de�nition in the system of the form

foo(X,Y,Z) :- ' $builtin'(38).

In e�e
t, a builtin is simply a segment of
ode in a large
ase (i.e. swit
h)

statement. Ea
h builtin is identi�ed internally by an integer, referred to as

19

arg/3 =/2 < =2 =< =2

>= =2 > =2 /n =2 `n =

′
=2

<</2 >>/2 =:=/2 = n = =2

is/2 ?=/2 n = n =1

` $builtin'/1 ` $
all'/1 nonvar/1 var/1

integer/1 real/1 halt/0 true/0

fail/0

Table 2: Inline Predi
ates of SB-Prolog

its \builtin number", asso
iated with it. The
ode for a builtin with buitin

number k
orresponds to the k

th

ase in the swit
h statement. SB-Prolog

limits the total number of builtins to 256.

Builtins, unlike inline predi
ates,
an be rede�ned by the user. For ex-

ample, the predi
ate foo/3 above
an be rede�ned simply by
ompiling the

new de�nition into a dire
tory su
h that during dynami
 loading, the new

de�nition would be en
ountered �rst and loaded.

A list of the builtins
urrently provided is listed in Appendix A. Ap-

pendix C des
ribes the pro
edure to be followed in order to de�ne new builtin

predi
ates.

Like builtin predi
ates, library predi
ates may also be rede�ned by the

user. The essential di�eren
e between builtin and library predi
ates is that

whereas the former are
oded into the simulator in C, the latter are written

in Prolog.

5.1 Input and Output

Input and output are done with respe
t to the
urrent input and output

streams. These
an be set, reset or
he
ked using the �le handling predi
ates

des
ribed below. The default input and output streams are denoted by user,

and refer to the user's terminal.

5.1.1 File Handling

see(F) F be
omes the
urrent input stream. F must be instantiated to an

atom at the time of the
all.

seeing(F) F is uni�ed with the name of the
urrent input �le.

seen Closes the
urrent input stream.

20

tell(F) F be
omes the
urrent output stream. F must be instantiated to

an atom at the time of the
all.

telling(F) F is uni�ed with the name of the
urrent output �le.

told Closes the
urrent output stream.

$exists(F) Su

eeds if �le F exists.

5.1.2 Term I/O

read(X) The next term, delimited by a full stop (i.e. a . followed by a

arriage-return or a spa
e), is read from the
urrent input stream and

uni�ed with X. The syntax of the term must a

ord with
urrent

operator de
larations. If a
all read(X)
auses the end of the
urrent

input stream to be rea
hed, X is uni�ed with the atom `end of �le'.

Further
alls to read for the same stream will then
ause an error

failure.

write(X) The term X is written to the
urrent output stream a

ording to

operator de
larations in for
e.

display(X) The term X is displayed on the terminal.

writeq(Term) Similar to write(Term), but the names of atoms and fun
-

tors are quoted where ne
essary to make the result a

eptable as input

to read.

print(Term) Prints out the term Term onto the
urrent output stream.

This predi
ate provides a handle for user-de�ned pretty-printing. If

Term is a variable then it is written using write/1; otherwise, if a

user-de�ned predi
ate portray/1 is de�ned, then a
all is made to

portray(Term); otherwise, print/1 is equivalent to write/1.

writename(Term) If Term is an uninstantiated variable, its name, whi
h

looks a lot like an address in memory, is written out; otherwise, the

prin
ipal fun
tor of Term is written out.

writeqname(Term) As for writename, but the names are quoted where

ne
essary.

21

print al(N , A) Prints A (whi
h must be an atom or a number) left-aligned

in a �eld of width N , with blanks padded to the right. If A's print

name is longer than the �eld width N , then A is printed but with no

right padding.

print ar(N , A) Prints A (whi
h must be an atom or a number) right-

aligned in a �eld of width N , with blanks padded to the left. If A's

print name is longer than the �eld width N , then A is printed but with

no left padding.

portray term(Term) Writes out the term Term on the
urrent output

stream. Variables are treated spe
ially: an uninstantiated variable is

printed out as Vn, where n is a number.

portray
lause(Term) Writes out the term Term, interpreted as a
lause,

on the
urrent output stream. Variables are treated as in portray term/1.

5.1.3 Chara
ter I/O

nl A new line is started on the
urrent output stream.

get0(N) N is the ASCII
ode of the next
hara
ter from the
urrent input

stream. If the
urrent input stream rea
hes its end of �le, a �1 is

returned (however, unlike in C-Prolog, the input stream is not
losed

on en
ountering end-of-�le).

get(N) N is the ASCII
ode of the next non-blank printable
hara
ter from

the
urrent input stream. It has the same behaviour as get0 on end

of �le.

put(N) ASCII
hara
ter
ode N is output to the
urrent output stream. N

must be an integer.

tab(N) N spa
es are output to the
urrent output stream. N must be an

integer.

5.2 Arithmetic

Arithmeti
 is performed by evaluable predi
ates whi
h take as arguments

arithmeti
 expressions and evaluate them. An arithmeti
 expression is a

term built from evaluable fun
tors, numbers and variables. At the time of

evaluation, ea
h variable in an arithmeti
 expression must be bound to a

22

number or to an arithmeti
 expression. Ea
h evaluable fun
tor stands for an

arithmeti
 operation.

The evaluable fun
tors are as follows, where X and Y are arithmeti

expressions.

X + Y addition.

X � Y subtra
tion.

X � Y multipli
ation.

X=Y division.

X==Y integer division.

X (mod Y) X (integer) modulo Y .

�X unary minus.

X /n Y integer bitwise
onjun
tion.

X n/ Y integer bitwise disjun
tion.

X � Y integer bitwise left shift of X by Y pla
es.

X � Y integer bitwise right shift of X by Y pla
es.

nX integer bitwise negation.

As far as uni�
ation is
on
erned, no type distin
tion is made between

integers and
oating point numbers, and no expli
it type
onversion is ne
-

essary when unifying an integer with a
oat. However, due to the �nite

pre
ision representation of
oating point numbers and
umulative round-

o� errors in
oating point arithmeti
,
omparisons involving
oating point

numbers may not always give the expe
ted results. An e�ort is made to min-

imize surprises by
onsidering two numbers x and y (at least one of whi
h is a

oat) to be uni�able if (kxk�kyk)=min(kxk; kyk) to be less than 10

−5
. The

user should note, however, that this does not guarantee immunity against

round-o� errors.

The arithmeti
 evaluable predi
ates are as follows, where X and Y stand

for arithmeti
 expressions, and Z for some term. Note that this means that

is only evaluates one of its arguments as an arithmeti
 expression (the right-

hand side one), whereas all the
omparison predi
ates evaluate both their

arguments.

23

Z is X Arithmeti
 expressionX is evaluated and the result, is uni�ed with Z.

Fails if X is not an arithmeti
 expression. Unlike many other Prolog

systems, variables in the expression X may be bound to other arith-

meti
 expressions as well as to numbers.

eval(E, X) Evaluates the arithmeti
 expression E and uni�es the result

with the term X. Fails if E is not an arithmeti
 expression. (Thus,

eval/2 is, ex
ept for the swit
hed argument order, the same as is/2.

It's around mainly for histori
al reasons.)

X=:=Y The values of X and Y are equal. If either X or Y involve
om-

pound subexpressions that are
reated at runtime, they should �rst be

evaluated using eval/2.

X= n =Y The values of X and Y are not equal. If either X or Y involve

ompound subexpressions that are
reated at runtime, they should �rst

be evaluated using eval/2.

X<Y The value of X is less than the value of Y . If either X or Y involve

ompound subexpressions that are
reated at runtime, they should �rst

be evaluated using eval/2.

X>Y The value of X is greater than the value of Y . If either X or Y involve

ompound subexpressions that are
reated at runtime, they should �rst

be evaluated using eval/2.

X=<Y The value of X is less than or equal to the value of Y . If either X

or Y involve
ompound subexpressions that are
reated at runtime,

they should �rst be evaluated using eval/2.

X>=Y The value of X is greater than or equal to the value of Y . If either X

or Y involve
ompound subexpressions that are
reated at runtime,

they should �rst be evaluated using eval/2.

oor(X, Y) If X is a
oating point number in the
all and Y is free, then Y

is instantiated to the largest integer whose absolute value is not greater

than the absolute value of X; if X is uninstantiated in the
all and Y is

an integer, then X is instantiated to the smallest
oat not less than Y .

oat
(F , M , E) If F is a number while M and E are uninstantiated in the

all, then M is instantiated to a
oat m (of magnitude less than 1),

24

and E to an integer n, su
h that

F = m� 2

n

If F is uninstantiated in the
all while M is a
oat and E an integer,

then F be
omes instantiated to M � 2

E
.

exp(X, Y) If X is instantiated to a number and Y is uninstantiated in

the
all, then Y is instantiated to e

X
(where e = 2.71828...); if X is

uninstantiated in the
all while Y is instantiated to a positive number,

then X is instantiated to log

e
(Y).

square(X, Y) If X is instantiated to a number while Y is uninstantiated in

the
all, then Y be
omes instantiated to X

2
; if X is uninstantiated in

the
all while Y is instantiated to a positive number, then X be
omes

instantiated to the positive square root of Y (if Y is negative in the

all, X be
omes instantiated to 0.0).

sin(X, Y) If X is instantiated to a number (representing an angle in radi-

ans) and Y is uninstantiated in the
all, then Y be
omes instantiated to

sin(X) (the user should
he
k the magnitude of X to make sure that

the result is meaningful). If Y is instantiated to a number between

��=2 and �=2 and X is uninstantiated in the
all, then X be
omes

instantiated to sin

−1
(Y).

5.3 Convenience

P ;Q P and then Q.

P ;Q P or Q.

true Always su

eeds.

X=Y De�ned as if by the
lause \Z=Z", i.e. X and Y are uni�ed.

Xn =Y Su

eeds if X and Y are not uni�able, fails if X and Y are uni�able.

It is thus equivalent to not(X = Y), but is signi�
antly more eÆ
ient.

X? =Y Su

eeds if X and Y are uni�able and fails if they are not, but does

not instantiate any variables. Thus, it tests whether X and Y are

uni�able. Equivalent to not(not(X = Y)), but is signi�
antly more

eÆ
ient.

25

5.4 Extra Control

! Cut (dis
ard) all
hoi
e points made sin
e the parent goal started exe
u-

tion. (The s
ope of
ut in di�erent
ontexts is dis
ussed in Se
tion 4.2).

not P If the goal P has a solution, fail, otherwise su

eed. It is de�ned as

if by

not(P) :- P, !, fail.

not(_).

P� > Q; Analogous to if P then Q else R, i.e. de�ned as if by

P -> Q ; R :- P, !, Q.

P -> Q ; R :- R.

P� >Q When o

urring other than as one of the alternatives of a disjun
-

tion, is equivalent to

P -> Q ; fail.

repeat Generates an in�nite sequen
e of ba
ktra
king
hoi
es. It is de�ned

by the
lauses:

repeat.

repeat :- repeat.

fail Always fails.

5.5 Meta-Logical

var(X) Tests whether X is
urrently instantiated to a variable.

nonvar(X) Tests whether X is
urrently instantiated to a non-variable

term.

atom(X) Che
ks that X is
urrently instantiated to an atom (i.e. a non-

variable term of arity 0, other than a number).

integer(X) Che
ks that X is
urrently instantiated to an integer.

real(X) Che
ks that X is
urrently instantiated to a
oating point number.

26

oat(X) Same as real/1,
he
ks that X is
urrently instantiated to a
oat-

ing point number.

number(X) Che
ks that X is
urrently instantiated to a number, i.e. that

it is either an integer or a real.

atomi
(X) Che
ks that X is
urrently instantiated to an atom or number.

stru
ture(X) Che
ks that X is
urrently instantiated to a
ompound term,

i.e. to a nonvariable term that is not atomi
.

is bu�er(X) Su

eeds if X is instantiated to a bu�er.

fun
tor(T , F , N) The prin
ipal fun
tor of term T has name F and arity N ,

where F is either an atom or, provided N is 0, a number. Initially,

either T must be instantiated to a non-variable, or F and N must

be instantiated to, respe
tively, either an atom and a non-negative

integer or an integer and 0. If these
onditions are not satis�ed, an

error message is given. In the
ase where T is initially instantiated to

a variable, the result of the
all is to instantiate T to the most general

term having the prin
ipal fun
tor indi
ated.

arg(I, T , X) Initially, I must be instantiated to a positive integer and T

to a
ompound term. The result of the
all is to unify X with the Ith

argument of term T . The arguments are numbered from 1 upwards.)

If the initial
onditions are not satis�ed or I is out of range, the
all

merely fails.

X= ::Y Y is a list whose head is the atom
orresponding to the prin
ipal

fun
tor of X and whose tail is the argument list of that fun
tor in X.

E.g.

produ
t(0,N,N-1) =.. [produ
t,0,N,N-1℄

N-1 =.. [-,N,1℄

produ
t =.. [produ
t℄

If X is instantiated to a variable, then Y must be instantiated either

to a list of determinate length whose head is an atom, or to a list of

length 1 whose head is a number.

27

name(X;L) If X is an atom or a number then L is a list of the ASCII
odes

of the
hara
ters
omprising the name of X. E.g.

name(produ
t,[112,114,111,100,117,99,116℄)

i.e. name(produ
t,"produ
t").

If X is instantiated to a variable, L must be instantiated to a list of

ASCII
hara
ter
odes. E.g.

| ?- name(X,[104,101,108,108,111℄)).

X = hello

| ?- name(X,"hello").

X = hello

all(X) If X is a nonvariable term in the program text, then it is exe
uted

exa
tly as if X appeared in the program text instead of
all(X), e.g.

: : :, p(a),
all((q(X), r(Y))), s(X), : : :

is equivalent to

: : :, p(a), q(X), r(Y), s(X), : : :

However, if X is a variable in the program text, then if at runtime X

is instantiated to a term whi
h would be a

eptable as the body of a

lause, the goal
all(X) is exe
uted as if that term appeared textually

in pla
e of the
all(X), ex
ept that any
ut (`!') o

urring in X will

remove only those
hoi
e points in X. If X is not instantiated as

des
ribed above, an error message is printed and
all fails.

X (where X is a variable) Exa
tly the same as
all(X). However, we prefer

the expli
it usage of
all/1 as good programming pra
ti
e, and the use

of a top level variable subgoal eli
its a warning from the
ompiler.

onlength(C, L) Su

eeds if the length of the print name of the
onstant C

(whi
h
an be an atom, bu�er or integer), in bytes, is L. If C is a bu�er

(see Se
tion 5.8), it is the length of the bu�er; if C is an integer, it is the

length of the de
imal representation of that integer, i.e., the number

of bytes that a $writename will use.

28

5.6 Sets

When there are many solutions to a problem, and when all those solutions

are required to be
olle
ted together, this
an be a
hieved by repeatedly

ba
ktra
king and gradually building up a list of the solutions. The following

evaluable predi
ates are provided to automate this pro
ess.

setof(X, P , S) Read this as S is the set of all instan
es of X su
h that

P is provable". If P is not provable, setof(X,P ,S) su

eeds with S

instantiated to the empty list [℄. The term P spe
i�es a goal or goals

as in
all(P). S is a set of terms represented as a list of those terms,

without dupli
ates, in the standard order for terms (see Se
tion 5.7).

If there are uninstantiated variables in P whi
h do not also appear in

X, then a
all to this evaluable predi
ate may ba
ktra
k, generating

alternative values for S
orresponding to di�erent instantiations of the

free variables of P . Variables o

urring in P will not be treated as free

if they are expli
itly bound within P by an existential quanti�er. An

existential quanti�
ation is written:

Y ^Q

meaning there exists a Y su
h that Q is true, where Y is some Prolog

term (usually, a variable, or tuple or list of variables).

bagof(X, P , Bag) This is the same as setof ex
ept that the list (or alter-

native lists) returned will not be ordered, and may
ontain dupli
ates.

If P is unsatis�able, bagof su

eeds binding Bag to the empty list.

The e�e
t of this relaxation is to save
onsiderable time and spa
e in

exe
ution.

�ndall(X, P , L) Similar to bagof/3, ex
ept that variables in P that do not

o

ur inX are treated as lo
al, and alternative lists are not returned for

di�erent bindings of su
h variables. The list L is, in general, unordered,

and may
ontain dupli
ates. If P is unsatis�able, �ndall su

eeds bind-

ing S to the empty list.

X ^ P The system re
ognises this as meaning there exists an X su
h that

P is true, and treats it as equivalent to
all(P). The use of this

expli
it existential quanti�er outside the setof and bagof
onstru
ts

is super
uous.

29

5.7 Comparison of Terms

These evaluable predi
ates are meta-logi
al. They treat uninstantiated vari-

ables as obje
ts with values whi
h may be
ompared, and they never instan-

tiate those variables. They should not be used when what you really want

is arithmeti

omparison (Se
tion 5.2) or uni�
ation. The predi
ates make

referen
e to a standard total ordering of terms, whi
h is as follows:

� variables, in a standard order (roughly, oldest �rst | the order is not

related to the names of variables);

� numbers, from �1 to +1;

� atoms, in alphabeti
al (i.e. ASCII) order;

�
omplex terms, ordered �rst by arity, then by the name of prin
ipal

fun
tor, then by the arguments (in left-to-right order).

For example, here is a list of terms in the standard order:

[X, -9, 1, fie, foe, fum, X = Y, fie(0,2), fie(1,1) ℄

The basi
 predi
ates for
omparison of arbitrary terms are:

X == Y Tests if the terms
urrently instantiating X and Y are literally

identi
al (in parti
ular, variables in equivalent positions in the two

terms must be identi
al). For example, the question

| ?- X == Y.

fails (answers no) be
ause X and Y are distin
t uninstantiated vari-

ables. However, the question

| ?- X = Y, X == Y.

su

eeds be
ause the �rst goal uni�es the two variables (see page ?).

Xn ==Y Tests if the terms
urrently instantiating X and Y are not literally

identi
al.

T1 �< T2 Term T1 is before term T2 in the standard order.

T1 �> T2 Term T1 is after term T2 in the standard order.

30

T1 �=< T2 Term T1 is not after term T2 in the standard order.

T1 �>= T2 Term T1 is not before term T2 in the standard order.

Some further predi
ates involving
omparison of terms are:

ompare(Op, T1, T2) The result of
omparing terms T1 and T2 is Op,

where the possible values for Op are:

`=' if IT1 is identi
al to T2,

`<' if T1 is before T2 in the standard order,

`>' if T1 is after T2 in the standard order.

Thus
ompare(=, T1,T2) is equivalent to T1 == T2.

sort(L1, L2) The elements of the list L1 are sorted into the standard order,

and any identi
al (i.e. `==') elements are merged, yielding the list L2.

keysort(L1, L2) The list L1 must
onsist of items of the form Key{Value.

These items are sorted into order a

ording to the value of Key, yielding

the list L2. No merging takes pla
e.

5.8 Buffers

SB-Prolog supports the
on
ept of bu�ers. A bu�er is a
tually a
onstant and

the
hara
ters that make up the bu�er is the name of the
onstant. However,

the symbol table entry for a bu�er is not hashed and thus is not added to

the obj-list, so two di�erent bu�ers will never unify. Bu�ers
an be allo
ated

either in permanent spa
e or on the heap. Bu�ers in permanent spa
e stay

there forever; bu�ers on the heap are deallo
ated when the \allo
ate bu�er"

goal is ba
ktra
ked over.

A bu�er allo
ated on the heap
an either be a simple bu�er, or it
an be

allo
ated as a subbu�er of another bu�er already on the heap. A subbu�er

will be deallo
ated when its superbu�er is deallo
ated.

There are o

asions when it is not known, in advan
e, exa
tly how mu
h

spa
e will be required and so how big a bu�er should be allo
ated. Sometimes

this problem
an be over
ome by allo
ating a large bu�er and then, after

using as mu
h as is needed, returning the rest of the bu�er to the system.

This
an be done, but only under very limited
ir
umstan
es: a bu�er is

allo
ated from the end of the permanent spa
e, the top of the heap, or from

the next available spa
e in the superbu�er; if no more spa
e has been used

31

beyond the end of the bu�er, a tail portion of the bu�er
an be returned to

the system. This operation is
alled \trimming" the bu�er.

The following is a list of library predi
ates for bu�er management:

allo
 perm(Size, Bu�) Allo
ates a bu�er with a length Size in the per-

manent (i.e. program) area. Size must be bound to a number. On

su

essful return, Bu� will be bound to the allo
ated bu�er. The

bu�er, being in the permanent area, is never de-allo
ated.

allo
 heap(Size, Bu�) Allo
ates a bu�er of size Size on the heap and

binds Bu� to it. Sin
e it is on the heap, it will be deallo
ated on

ba
ktra
king.

trimbu�(Type, Bu�, Newlen) This allows (in some very restri
ted
ir-

umstan
es) the
hanging of the size of a bu�er. Type is 0 if the bu�er

is permanent, 1 if the bu�er is on the heap. Bu� is the bu�er. Newlen

is an integer: the size (whi
h should be smaller than the original length

of the bu�er) to make the bu�er. If the bu�er is at the top of the heap

(if heap bu�er) or the end of the program area (if permanent) then the

heap-top (or program area top) will be readjusted down. The length

of the bu�er will be modi�ed to Newlen. This is (obviously) a very

low-level primitive and is for ha
kers only to implement grungy stu�.

onlength(Constant,Length) Su

eeds if the length of the print name of

the
onstant Constant (whi
h
an be an atom, bu�er or integer), in

bytes, is Length. If Constant is a bu�er, it is the length of the bu�er;

if Constant is an integer, it is the length of the de
imal representation

of that integer, i.e., the number of bytes that a $writename will use.

5.9 Modification of the Program

The predi
ates de�ned in this se
tion allow modi�
ation of the program

as it is a
tually running. Clauses
an be added to the program (asserted)

or removed from the program (retra
ted). At the lowest level, the system

supports the asserting of
lauses with upto one literal in the body. It does

this by allo
ating a bu�er and
ompiling
ode for the
lause into that bu�er.

Su
h a bu�er is
alled a \
lause referen
e" (
lref). The
lref is then added to a

hain of
lrefs. The
hain of
lrefs has a header, whi
h is a small bu�er
alled

a \predi
ate referen
e" (prref), whi
h
ontains pointers to the beginning and

end of its
hain of
lrefs. Clause referen
es are quite similar to \database

referen
es" of C-Prolog, and
an be
alled.

32

When
lauses are added to the program through assert, an index is nor-

mally
reated on the prin
ipal fun
tor of the �rst argument in the head of the

lause. The argument on whi
h the index is being
reated may be
hanged

via the index/3 dire
tive. In parti
ular, if no index is desired on a predi-

ate, this should be spe
i�ed using the index/3 dire
tive with the argument

number set to zero, e.g. if no index is desired on a predi
ate foo/3, then the

dire
tive

:- index(foo, 3, 0).

should be spe
i�ed.

The predi
ates that
an be used to modify the program are the following:

assert(C) The
urrent instan
e of C is interpreted as a
lause and is added

to the program (with new private variables repla
ing any uninstanti-

ated variables), at the end of the list of
lauses for that predi
ate. C

must be instantiated to a non-variable.

assert(C, Ref) As for assert/1, but also uni�es Ref with the
lause refer-

en
e of the
lause asserted.

asserti(C,N) The
urrent instan
e of C, interpreted as a
lause, is asserted

to the program with an index on its N

th
argument. If N is zero, no

index is
reated.

asserta(C) Similar to assert(C), ex
ept that the new
lause be
omes the

�rst
lause of the pro
edure
on
erned.

asserta(C, Ref) Similar to asserta(C), but also uni�es Ref with the
lause

referen
e of the
lause asserted.

assertz(C) Similar to assert(C), ex
ept that the new
lause be
omes the

last
lause of the pro
edure
on
erned.

assertz(C, Ref) Similar to assertz(C), but also uni�es Ref with the
lause

referen
e of the
lause asserted.

assert union(P , Q) The
lauses for Q are added to the
lauses for P . For

example, the
all

| ?- assert union(p(X,Y),q(X,Y)).

has the e�e
t of adding the rule

33

p(X,Y) :- q(X,Y).

as the last rule de�ning p/2. If P is not de�ned, it results in the
all

to Q being the only
lause for P .

The variables in the arguments to assert union/2 are not signi�
ant,

e.g. the above would have been equivalent to

| ?- assert union(p(Y,X),q(X,Y)).

or

| ?- assert union(p(,),q(,)).

However, the arities of the two predi
ates involved must mat
h, e.g.

even though the goal

| ?- assert_union(p(X,Y), r(X,Y,Z)).

will su

eed, the predi
ate p/2 will not in any way depend on the

lauses for r/3.

assert(Clause, AZ, Index,Clref) Asserts a
lause to a predi
ate. Clause

is the
lause to assert. AZ is 0 for insertion as the �rst
lause, 1 for

insertion as the last
lause. Index is the number of the argument on

whi
h to index (0 for no indexing). Clref is returned as the
lause ref-

eren
e of the fa
t newly asserted. If the main fun
tor symbol of Clause

has been de
lared (by $assertf allo
 t/2, see below) to have its
lauses

on the heap, the
lref will be allo
ated there. If the predi
ate symbol

of Clause is unde�ned, it will be initialized and Clause added. If the

predi
ate symbol has
ompiled
lauses, it is �rst
onverted to be dy-

nami
 (see symtype/2, Se
tion 5.10) by adding a spe
ial
lref that
alls

the
ompiled
lauses. Fa
t, AZ and Index are input arguments, and

should be instantiated at the time of
all; Clref is an output argument,

and should be uninstantiated at the time of
all.

lause(P ,Q) Pmust be bound to a non-variable term, and the program is

sear
hed for a
lause Cl whose head mat
hes P . The head and body

of the
lause Cl is uni�ed with P and Q, respe
tively. If Cl is a unit

lause, Q will be uni�ed with `true'. Only interpreted
lauses, i.e. those

reated through assert,
an be a

essed via
lause/2.

34

lause(Head, Body, Ref) Similar to
lause(Head,Body) but also uni�es

Ref with the database referen
e of the
lause
on
erned.
lause/3
an

be exe
uted in one of two modes: either Head must be instantiated to

a non-variable term at the time of the
all, or Ref must be instantiated

to a database referen
e. As in the
ase of
lause/2, only interpreted

lauses, i.e. those
reated through assert,
an be a

essed via
lause/3.

retra
t(Clause) The �rst
lause in the program that uni�es with Clause

is deleted from the program. This predi
ate may be used in a non-

deterministi
 fashion, i.e. it will su

essively ba
ktra
k to retra
t
lauses

whose heads mat
h Head. Head must be initially instantiated to a non-

variable. In the
urrent implementation, retra
t works only for asserted

(e.g.
onsulted)
lauses.

abolish(P) Completely remove all
lauses for the pro
edure with head P

(whi
h should be a term). For example, the goal

| ?- abolish(p(, ,)).

removes all
lauses for the predi
ate p/3.

abolish(P , N) Completely remove all
lauses for the predi
ate P (whi
h

should be an atom) with arity N (whi
h should be an integer).

5.10 Internal Database

re
orded(Key, Term, Ref) The internal database is sear
hed for terms

re
orded under the key Key. These terms are su

essively uni�ed with

Term in the order they o

ur in the database; at the same time, Ref

is uni�ed with the database referen
e of the re
orded item. The key

must be given, and may be an atom or
omplex term. If it is a
omplex

term, only the prin
ipal fun
tor is signi�
ant.

re
orda(Key, Term, Ref) The term Term is re
orded in the internal database

as the �rst item for the key Key, where Ref is its database referen
e.

The key must be given, and only its prin
ipal fun
tor is signi�
ant.

re
ordz(Key, ITerm, Ref) The term Term is re
orded in the internal

database as the last item for the key Key, where Ref is its database

referen
e. The key must be given, and only its prin
ipal fun
tor is

signi�
ant.

35

erase(Clref) The re
orded item or
lause whose database referen
e is Clref

is deleted from the internal database or program. Clref should be

instantiated at the time of
all.

instan
e(Ref, Term) A (most general) instan
e of the re
orded term whose

database referen
e is Ref is uni�ed with Term. Ref must be instanti-

ated to a database referen
e. Note that instan
e/2 will not be able to

a

ess terms that have been erased.

5.11 Information about the State of the Program

listing Lists in the
urrent output stream the
lauses for all the interpreted

predi
ates in the program, ex
ept predi
ates that are \internal", i.e.

whose names begin with `$' or ` $', or whi
h are provided as prede�ned

(builtin or library) predi
ates. A bug in the
urrent system is that even

though the user is allowed to rede�ne su
h predi
ates, listing/0 does not

know about su
h rede�nitions, and will not list su
h predi
ates (they

may, however, be a

essed through listing/1 if they are interpreted).

listing(A) The argument A may be a predi
ate spe
i�
ation of the form

Name/Arity in whi
h
ase only the
lauses for the spe
i�ed predi
ate

are listed. Alternatively, it is possible for A to be a list of predi
ate

spe
i�
ations, e.g.

| ?- listing([
on
atenate/3, reverse/2, go/0℄).

Only interpreted
lauses, i.e.
lauses
reated via assert,
an be a

essed

through listing/1.

urrent atom(Atom) Generates (through ba
ktra
king) all
urrently known

atoms, and uni�es ea
h in turn with Atom. However, atoms
onsidered

\internal" symbols, i.e. those whose names begin with $ or $ are not

returned. The intrepid user who wishes to a

ess su
h internal atoms

as well
an use the goal

?- $
urrent atom(Atom, 1).

urrent fun
tor(Name, Term) Generates (through ba
ktra
king) all
ur-

rently known fun
tors (whi
h in
ludes fun
tion and predi
ate symbols),

and for ea
h one returns its name and most general term as Name

36

and Term respe
tively. However, fun
tors
onsidered \internal" sym-

bols, i.e. those whose names begin with $ or $, or whi
h are provided

as prede�ned predi
ates, are not returned if both arguments to
ur-

rent fun
tor/2 are variables. Internal symbols (of whi
h there are a

great many) as well as external ones may be a

essed via

?- $
urrent fun
tor(Name, Term, 1).

A bug in the
urrent implementation is that even though the user

is allowed to rede�ne \internal" (builtin or library) predi
ates,
ur-

rent fun
tor/2 does not know whether they have been rede�ned, and

hen
e will not return su
h predi
ates if both arguments to
urrent fun
tor/2

are variables.

urrent predi
ate(Name, Term) Generates (through ba
ktra
king) all

urrently known predi
ates, and for ea
h one returns its name and most

general term as Name and Term respe
tively. However, predi
ates

onsidered \internal", i.e. those whose names begin with $ or $, or

whi
h are provided as prede�ned predi
ates, are not returned if both

arguments to
urrent predi
ate/2 are variables. Internal symbols (of

whi
h there are a great many) as well as external ones may be a

essed

via

?- $
urrent predi
ate(Name, Term, 1).

A bug in the
urrent implementation is that even though the user

is allowed to rede�ne \internal" (builtin or library) predi
ates,
ur-

rent predi
ate/2 does not know whether they have been rede�ned, and

hen
e will not return su
h predi
ates if both arguments to
urrent predi
ate/2

are variables.

predi
ate property(Term, Property) If Term is a term whose prin
ipal

fun
tor is a predi
ate, Property is uni�ed with the
urrently known

properties of the
orresponding predi
ate. If Term is a variable, then

it is uni�ed (su

essively, through ba
ktra
king) with the most general

term for a predi
ate whose known properties are uni�ed with Property.

For example, all the interpreted predi
ates in the program may be

enumerated using

?- predi
ate property(X, interpreted).

37

If the �rst argument to predi
ate property/2 is uninstantiated at the

time of the
all, \internal" predi
ates will not be returned. A bug in

the
urrent implementation is that even though the user is allowed to

rede�ne su
h \internal" predi
ates, predi
ate property/2 does not know

about su
h rede�nitions, and will not return su
h predi
ates if its �rst

argument is uninstantiated. Currently, the only properties that are

onsidered are interpreted and
ompiled.

5.12 Environmental

op(priority, type, name) Treat name as an operator of the stated type

and priority (see Se
tion 3.2). name may also be a list of names, in

whi
h all are to be treated as operators of the stated type and priority.

break Causes the
urrent exe
ution to be suspended at the next pro
edure

all. Then the message [Break (level 1) ℄ is displayed. The inter-

preter is then ready to a

ept input as though it was at the top level

(ex
ept that at break level n > 0, the prompt is n: ?-). If another

all of break is en
ountered, it moves up to level 2, and so on. To

lose the break and resume the exe
ution whi
h was suspended, type

the END-OF-INPUT
hara
ter. Exe
ution will be resumed at the pro-

edure
all where it had been suspended. Alternatively, the suspended

exe
ution
an be aborted by
alling the evaluable predi
ate abort,

whi
h
auses a return to the top level.

abort Aborts the
urrent exe
ution, taking you ba
k to top level.

save(F) The system saves the
urrent state of the system into �le F .

restore(F) The system restores the saved state in �le F to be the
urrent

state. One restri
tion imposed by the
urrent system is that various

system parameters (e.g. sta
k sizes, permanent spa
e, heap spa
e, et
.)

of the saved state have to be the same as that of the
urrent invo
a-

tion. Thus, it is not possible to save a state from an invo
ation where

50000 words of permanent spa
e had been allo
ated, and then restore

the same state in an invo
ation with 100000 words of permanent spa
e.

putime(X) Uni�es X with the time elapsed, in millise
onds, sin
e the

system was started up.

$getenv(Var,Val) Val is uni�ed with the value of the Unix environment

variable Var. Fails is Var is unde�ned.

38

statisti
s Prints out the
urrent allo
ations and amounts of spa
e used for

ea
h of the four main areas: the permanent area, the lo
al sta
k, the

global sta
k and the trail sta
k. Does not work well unless the simulator

has been
alled with the -s option (see Se
tion 7.2).

statisti
s(Keyword, List) Usually used with Keyword instantiated to a

keyword, e.g. `runtime', and List unbound. It uni�es List with a list of

statisti
s determined by Keyword. The keys and values are summarized

in Table 5.12. Times are given in millise
onds and sizes are given in

bytes.

Keyword List

runtime [
pu time used by Prolog,
pu time sin
e

last
all to statisti
s/2℄

memory [total virtual memory, 0℄

ore (same as for the keyword memory)

program [program spa
e in use, program spa
e free℄

heap (same as for the keyword program)

global sta
k [global sta
k in use, global sta
k free℄

lo
al sta
k [lo
al sta
k in use, lo
al sta
k free℄

trail [trail sta
k in use, trail sta
k free℄

garbage
olle
tion [0, 0℄

sta
k shifts [0, 0℄

Table 3: Run Time Statisti
s Predi
ates

Note:

1. For the keyword `memory' the se
ond element of the returned list is

always 0.

2. For the keyword `trail', the se
ond element of the returned list is the

amount of trail sta
k free. This is similar to Si
stus Prolog (version 0.5),

but di�erent from Quintus Prolog (version 1.6).

3. Currently, SB-Prolog does not have garbage
olle
tion or sta
k shifting,

hen
e the list values returned for these are [0, 0℄.

nodynload(P , N) Flags the predi
ate P with arity N as one that should

not be attempted to be dynami
ally loaded if it is unde�ned. If a

predi
ate so
agged is unde�ned when a
all to it is en
ountered, the

all fails quietly without trying to invoke the dynami
 loader or giving

39

an error message. P and N should be instantiated to an atom and an

integer, respe
tively, at the time of
all to nodynload/2.

symtype(T , N) Uni�es N with the \internal type" of the prin
ipal fun
tor

of the term T , whi
h must be instantiated at the time of the
all. N

is bound to 0 if T does not have an entry point de�ned (i.e.
annot

be exe
uted); to 1 if the prin
ipal fun
tor of T is \dynami
", i.e. has

asserted
ode; to 2 if the prin
ipal fun
tor for T is a
ompiled predi
ate;

and 3 if T denotes a bu�er. Thus, for example, if the predi
ate p/2 is

a
ompiled predi
ate whi
h has been loaded into the system, the goal

| ?- symtype(p(,), X).

will su

eed binding X to 2; on the other hand, the goal

| ?- assert(q(a,b,
)), symtype(q(, ,), X).

will su

eed binding X to 1.

system(Call) Calls the operating system with the atom Call as argument.

For example, the
all

| ?- system('ls').

will produ
e a dire
tory listing. Sin
e system/1 is exe
uted by forking

o� a shell pro
ess, it
annot be used, for example, to
hange the working

dire
tory of the simulator.

sys
all(N , Args, Res) Exe
utes the Unix system
all number N with ar-

guments Args, and returns the result in Res. N is an integer, and Args

a Prolog list of the arguments to the system
all. For example, to

exe
ute the system
all
reat(File,Mode), knowing that the sys
all

number for the Unix
ommand
reat(2) is 8, we exe
ute the goal

| ?- sys
all(8, [File, Mode℄, Des).

where Des is the �le des
riptor returned by
reat. The sys
all numbers

for some Unix system
alls are given in Table 4.

40

exit 1 fork 2

read 3 write 4

open 5
lose 6

reat 8 link 9

unlink 10
hdir 12

hmod 15 lseek 19

a

ess 33 kill 37

wait 84 so
ket 97

onne
t 98 a

ept 99

send 101 re
v 102

bind 104 setso
kopt 105

listen 106 re
vmsg 113

sendmsg 114 getso
kopt 118

re
vfrom 125 sendto 133

so
ketpair 135 mkdir 136

rmdir 137 getso
kname 150

Table 4: Sys
all Numbers for Some Unix Systems Calls

5.13 Global Values

SB-Prolog has some primitives that permit the programmer to manipulate

global values. These are provided primarily as an eÆ
ien
y ha
k, and need-

less to say, should be used with a great deal of
are.

globalset(Term) Allows the user to save a global value. Term must be

bound to a
ompound term, say p(V). V must be a number or a

onstant or a variable. If V is a number or a
onstant, the e�e
t of

globalset(p(V))
an be des
ribed as:

retra
t(p()), assert(p(V)).

I.e., p is a predi
ate that when
alled will, from now on (until some

other
hange by globalset/1), deterministi
ally return V . If V is a vari-

able, the e�e
t is to make V a global variable whose value is a

essible

by
alling p. For example, exe
uting globalset(p(X)) makes X a

global variable. X
an be set by uni�
ation with some other term. On

ba
ktra
king, X will be restored to its earlier value.

gennum(Newnum) gennum/1 sets its argument to a new integer every

time it is invoked.

41

gensym(C, Newsym) gensym/2 sets its se
ond argument to an atom whose

name is made by
on
atenating the name of the atom C to the
ur-

rent gennum number. This new
onstant is bound to Newsym. For

example, if the
urrent gennum number is 37, then the
all

| ?- gensym(aaa,X)

will su

eed binding X to the atom `aaa37'.

5.14 Exotica

This se
tion des
ribes some low-level routines that are sometimes useful in

mu
king around with bu�ers. These are for serious ha
kers only.

$allo
 bu�(Size,Bu�,Type,Supbu�,Ret
ode) Allo
ates a bu�er. Size is

the length (in bytes) of the bu�er to allo
ate; Bu� is the bu�er allo-

ated, and should be unbound at the time of the
all; Type indi
ates

where to allo
ate the bu�er: a value of 0 indi
ates that the bu�er is

to be allo
ated in permanent spa
e, 1 that it should be on the heap,

and 2 indi
ates that it should be allo
ated from a larger heap bu�er;

Supbu� is the larger bu�er to allo
ate a subbu�er out of, and is only

looked at if the value of Type is 2; Ret
ode is the return
ode: a value

of 0 indi
ates that the bu�er has been allo
ated, while a value of 1

indi
ates that the bu�er
ould not be allo
ated due to la
k of spa
e.

The arguments Size, Type, and Supbu� (if Type = 2) are input argu-

ments, and should be bound at the time of the
all; Bu� and Ret
ode

are output arguments, and should be unbound at the time of the
all.

all ref(Call, Ref) Calls the predi
ate whose database referen
e (prref) is

Ref, using the literal Call as the
all. This is similar to
all ref(Call,

Ref, 0).

all ref(Call, Ref, Tr) Calls the predi
ate whose database referen
e (prref)

is Ref, using the literal Call as the
all. Tr must be either 0 or 1: if Tr is

0 then the
all Call is made assuming the \trust" optimization will be

made; if Tr is 1 then the \trust" optimization is not used, so that any

new fa
t added before �nal failure will be seen by Call. (Also, this
ur-

rently does not take advantage of any indexing that might have been

onstru
ted.) Call, Ref and Tr are all input arguments, and should be

instantiated at the time of
all.

42

$assertf allo
 t(Palist,Size) De
lares that ea
h predi
ate in the list Pal-

ist of predi
ate/arity pairs (terms of the form `/'(P ,N) where P is a

predi
ate symbol and N the arity of P) is to have any fa
ts asserted

to them stored in a bu�er on the heap, to be allo
ated here. This

allo
ates a superbu�er of size Size on the heap. Future assertions to

these predi
ates will have their
lauses put in this bu�er. When this

all is ba
ktra
ked over, any
lauses asserted to these predi
ates are

deallo
ated, and a subsequent
all to any of those predi
ates will
ause

the simulator to report an error and fail. Both Palist and Size are

input arguments, and should be instantiated at the time of
all.

$db new prref(Prref,Where,Supbu�) Creates an empty Prref, i.e. one

with no fa
ts in it. If
alled, it will simply fail. Where indi
ates where

the prref should be allo
ated: a value of 0 indi
ates the permanent area,

while a value of 2 indi
ates that it is to be allo
ated as a subbu�er.

Supbu� is the superbu�er from whi
h to allo
ate Prref if Where is 2.

Where should be instantiated at the time of
all, while Prref should be

uninstantiated; in addition, if Where is 2, Supbu� should be instanti-

ated at the time of
all.

$db assert fa
t(Fa
t,Prref,AZ,Index,Clref,Where,Supbu�) Fa
t is a

fa
t to be asserted; Prref is a predi
ate referen
e to whi
h to add the

asserted fa
t; AZ is either 0, indi
ating the fa
t should be inserted as

the �rst
lause in Prref, or 1, indi
ating it should be inserted as the

last; Index is 0 if no index is to be built, or n if an index on the n

th

argument of the fa
t is to be used. (Asserting at the beginning of

the
hain with indexing is not yet supported.) Where indi
ates where

the
lref is to be allo
ated: a value of 0 indi
ates that it should be

in the permanent area, while a value of 2 indi
ates that it should be

allo
ated as a subbu�er of Supbu�. Clref is returned and it is the
lause

referen
e of the asserted fa
t. Fa
t, Prref, AZ, Index, and Where are

input arguments, and should be instantiated at the time of
all; in

addition, if Where is 2, then Supbu� should also be instantiated. Clref

is an output argument, and should be uninstantiated at the time of

all.

$db add
lref(Fa
t,Prref,AZ,Index,Clref,Where,Supbu�) Adds the
lref

Clref to the prref Prref. Fa
t is the fa
t that has been
ompiled into

Clref (used only to get the arity and for indexing). The other param-

eters are as for $db assert fa
t/7.

43

$db
all prref(Call,Prref) Calls the prref Prref using the literal Call as

the
all. The
all is done by simply bran
hing to the �rst
lause. New

fa
ts added to Prref after the last fa
t has been retrieved by Call, but

before Call is failed through, will not be used. Both Call and Prref are

input arguments, and should be instantiated at the time of
all.

$db
all prref s(Call,Prref) This also
alls the prref Prref using Call as

the
all. The di�eren
e from $db
all prref is that this does not use the

\trust" optimization, so that any new fa
t added before �nal failure will

be seen by Call. (Also, this
urrently does not take advantage of any

indexing that might have been
onstru
ted, while $db
all prref does.)

Both Call and Prref are input arguments, and should be instantiated

at the time of
all.

$db get
lauses(Prref,Clref,Dir) This returns, nondeterministi
ally, all

the
lause referen
es Clref for
lauses asserted to prref Prref. If Dir

is 0, then the �rst
lref on the list is returned �rst; if Dir is 1, then they

are returned in reverse order. Prref and Dir are input arguments, and

should be instantiated at the time of
all; Clref is an output argument,

and should be uninstantiated at the time of
all.

6 Debugging

6.1 High-Level Tracing

The preferred method of tra
ing exe
ution is through the predi
ate tra
e/1.

This predi
ate takes as argument a term P/N , where P is a predi
ate name

and N its arity, and sets a \tra
e point" on the
orresponding predi
ate; it

an also be given a list of su
h terms, in whi
h
ase a tra
e point is set on

ea
h member of the list. For example, exe
uting

| ?- tra
e(pred1/2), tra
e([pred2/3, pred3/2℄).

sets tra
e points on predi
ates pred1/2, pred2/3 and pred3/2. Only those

predi
ates are tra
ed that have tra
e points set on them.

If all the predi
ates in a �le are to be tra
ed, it is usually
onvenient to

use the PredList parameter of
ompile/4 or
onsult/3, e.g.:

| ?-
ompile(foo, 'foo.out', [t,v℄, Preds), load('foo.out'),

tra
e(Preds).

44

or

| ?-
onsult(foo, [v℄, Preds), tra
e(Preds).

Noti
e that in the �rst
ase, the t
ompiler option (see Se
tion 8.2) should be

spe
i�ed in order to turn o�
ertain assembler optimizations and fa
ilitate

tra
ing. In the se
ond
ase, the same e�e
t may be a
hieved by spe
ifying

the t option to
onsult.

The tra
e points set on predi
ates may be overwritten by loading byte

ode �les via load/1, and in this
ase it may be ne
essary to expli
itly set

tra
e points again on the loaded predi
ates. This does not happen with

onsult: predi
ates that were being tra
ed
ontinue to have tra
e points set

after
onsulting.

The tra
ing fa
ilities of SB-Prolog are in many ways very similar to those

of C-Prolog. However, leashing is not supported, and only those predi
ates

an be tra
ed whi
h have had tra
e points set on them through tra
e/1.

This makes tra
e/1 and spy/1 very similar: essentially, tra
e amounts to two

levels of spy points. In SB-Prolog, tra
ing o

urs at Call (i.e. entry to a

predi
ate), su

essful Exit from a
lause, and Failure of the entire
all. The

tra
ing options available during debugging are the following:

, newline: Creep Causes the system to single-step to the next port (i.e.

either the entry to a tra
ed predi
ate
alled by the exe
uted
lause, or

the su

ess or failure exit from that
lause).

a: Abort Causes exe
ution to abort and
ontrol to return to the top level

interpreter.

b: Break Calls the evaluable predi
ate break, thus invoking re
ursively a

new in
arnation of the system interpreter. The
ommand prompt at

break level n is

n: ?-

The user may return to the previous break level by entering the system

end-of-�le
hara
ter (e.g.
trl-D), or typing in the atom end of �le; or

to the top level interpreter by typing in abort.

f: Fail Causes exe
ution to fail, thus transferring
ontrol to the Fail port of

the
urrent exe
ution.

h: Help Displays the table of debugging options.

45

l: Leap Causes the system to resume running the program, only stopping

when a spy-point is rea
hed or the program terminates. This allows the

user to follow the exe
ution at a higher level than exhaustive tra
ing.

n: Nodebug Turns o� debug mode.

q: Quasi-skip This is like Skip ex
ept that it does not mask out spy points.

r: Retry (fail) Transfers to the Call port of the
urrent goal. Note, how-

ever, that side e�e
ts, su
h as database modi�
ations et
., are not

undone.

s: Skip Causes tra
ing to be turned o� for the entire exe
ution of the pro
e-

dure. Thus, nothing is seen until
ontrol
omes ba
k to that pro
edure,

either at the Su

ess or the Failure port.

Other predi
ates that are useful in debugging are:

untra
e(Preds) where Preds is a term P/N , where P is a predi
ate name

and N its arity, or a list of su
h terms. Turns o� tra
ing on the spe
i�ed

predi
ates. Preds must be instantiated at the time of the
all.

spy(Preds) where Preds is a term P/N , where P is a predi
ate name and

N its arity, or a list of su
h terms. Sets spy points on the spe
i�ed

predi
ates. Preds must be instantiated at the time of the
all.

nospy(Preds) where Preds is a term P/N , where P is a predi
ate name

and N its arity, or a list of su
h terms. Removes spy points on the

spe
i�ed predi
ates. Preds must be instantiated at the time of the
all.

debug Turns on debugging mode. This
auses subsequent exe
ution of

predi
ates with tra
e or spy points to be tra
ed, and is a no-op if

there are no su
h predi
ates. The predi
ates tra
e/1 and spy/1
ause

debugging mode to be turned on automati
ally.

nodebug Turns o� debugging mode. This
auses tra
e and spy points to

be ignored.

debugging Displays information about whether debug mode is on or not,

and lists predi
ates that have tra
e points or spy points set on them.

tra
epreds(L) Binds L to a list of terms P/N where the predi
ate P of

arity N has a tra
e point set on it.

46

spypreds(L) Binds L to a list of terms P/N where the predi
ate P of arity

N has a spy point set on it.

There is one known bug in the pa
kage: attempts to set tra
e points, via

tra
e/1, on system and library predi
ates that are used by the tra
e pa
kage

an
ause bizarre behaviour.

6.2 Low-Level Tracing

SB-Prolog also provides a fa
ility for low-level tra
ing of exe
ution. This
an

be a
tivated by invoking the simulator with the -T option, or through the

predi
ate $tra
e/0. It
auses tra
e information to be printed out at every

all (in
luding those to system trap handlers). The volume of su
h tra
e

information
an very be
ome large very qui
kly, so this method of tra
ing is

not re
ommended in general.

Low-level tra
ing may be turned o� using the predi
ate untra
e/0.

7 The Simulator

The simulator resides in the SB-Prolog system dire
tory sim. The following

se
tions des
ribe various aspe
ts of the simulator.

7.1 Invoking the Simulator

The simulator is invoked by the
ommand

sbprolog b
 file

where b
 �le is a byte
ode �le resulting from the
ompilation of a Prolog pro-

gram. In almost all
ases, the user will wish to intera
t with the SB-Prolog

query evaluator, in whi
h
ase b
 �le will be $readloop, and the
ommand

will be

sbprolog Path/$readloop

where Path is the path to the dire
tory
ontaining the
ommand interpreter

$readloop. This dire
tory, typi
ally, is the system dire
tory modlib.

The
ommand interpreter reads in a query typed in by the user, evaluates

it and prints the answer(s), repeating this until it en
ounters an end-of-�le

(the standard end-of-�le
hara
ter on the system, e.g.
trl-D), or the user

types end of �le or halt.

47

The user should ensure that the the dire
tory
ontaining the exe
utable

�le sim (typi
ally, the system dire
tory sim) is in
luded in the shell variable

path; if not, the full path to the simulator will have to be spe
i�ed.

In general, the simulator may be invoked with a variety of options, as

follows:

sbprolog -options b
 file

or

sbprolog -option1 -option2 : : : -optionn b
 file

The options re
ognized by the simulator are des
ribed below.

When
alled with a byte
ode �le b
 �le, the simulator begins exe
ution

with the �rst
lause in that �le. The �rst
lause in su
h a �le, therefore,

should be a
lause without any arguments in the head (otherwise, the sim-

ulator will attempt to dereferen
e argument pointers in the head that are

really pointing into deep spa
e, and usually
ome to a sad end). If the

user is exe
uting a �le in this manner rather than using the
ommand in-

terpreter, he should also be
areful to in
lude the unde�ned predi
ate handler

` $unde�ned pred'/1, whi
h is normally de�ned in the �le modlib/$init sys.P.

7.2 Simulator Options

The following is a list of options re
ognized by the simulator.

T Generates a tra
e at entry to ea
h
alled routine.

d Produ
es a disassembled dump of b
 �le into a �le named `dump.pil' and

exits.

n Adds ma
hine addresses when produ
ing tra
e and dump.

s Maintains information for the builtin statisti
s/0. Default: o�.

m size Allo
ates size words (4 bytes) of spa
e to the lo
al sta
k and heap

together. Default: 100000.

p size Allo
ates size words of spa
e to the program area. Default: 100000.

b size Allo
ates size words of spa
e to the trail sta
k. Default: m/5, where

m is the amount of spa
e allo
ated to the lo
al sta
k and heap together.

This parameter, if spe
i�ed, must follow the -m parameter.

48

As an example, the
ommand

sbprolog -s -p 60000 -m 150000 \$readloop

starts the simulator exe
uting the
ommand interpreter with 60000 bytes

of program spa
e, 150000 bytes of lo
al and global sta
k spa
e and (by

default) 30000 bytes of trail sta
k spa
e; the s option also results in statisti
s

information being maintained.

7.3 Interrupts

SB-Prolog provides a fa
ility for ex
eption handling using user-de�nable in-

terrupt handlers. This
an be used both for external interrupts, e.g. those

generated from the keyboard by the user or from signals other pro
esses;

or internal traps, e.g. those
aused by sta
k over
ows, en
ountering unde-

�ned predi
ates, et
. For example, the \unde�ned predi
ate" interrupt is

handled, by default, by the predi
ate ` $unde�ned pred'/1, whi
h is de�ned

in the �les modlib/sr
/$init sys.P and modlib/sr
/$readloop.P. The

default a
tion on en
ountering an unde�ned predi
ate is to attempt to dy-

nami
ally load a �le whose name mat
hes that of the unde�ned predi
ate.

However, the user may easily alter this behaviour by rede�ning the unde�ned

predi
ate handler.

In general, interrupts are handled by the predi
ate ` $interrupt'/2: a

all to this predi
ate is of the form ` $interrupt'(Call, Code), where Call is

the
all that generated the interrupt, and Code is an integer indi
ating the

nature of the interrupt. For ea
h interrupt
ode, the interrupt handler then

alls a handler that is designed to handle that parti
ular kind of interrupt.

At this point, the following interrupt
odes have prede�ned meanings:

0 unde�ned predi
ate;

1 keyboard interrupt (^C);

2 sta
k over
ow.

Other interrupt
odes may be in
orporated by modifying the de�nition

of the predi
ate ` $ interrupt'/2 in the �le modlib/sr
/$readloop.P.

Interrupts during exe
ution are signalled from within the WAM simu-

lator. The general method for raising an interrupt is using the fun
tion

set inter
ode in the �le sim/sub inst.
: to raise an interrupt whose
ode is

n, the line

49

lp
reg = set inter
ode(n);

is added to the appropriate pla
e in the main loop of the interpreter, de�ned

in sim/main.
.

8 The Compiler

The
ompiler translates Prolog sour
e �les into byte-
ode obje
t �les. It

is written entirely in Prolog. The byte
ode for the
ompiler
an be found

in the SB-Prolog system dire
tory
mplib, with the sour
e
ode resident in

mplib/sr
.

Byte
ode �les may be
on
atenated together to produ
e other byte
ode

�les. Thus, for example, if foo1 and foo2 are byte
ode �les resulting from

the
ompilation of two Prolog sour
e programs, then the �le foo, obtained

by exe
uting the shell
ommand

at foo1 foo2 > foo

is a byte
ode �le as well, and may be loaded and exe
uted. In this
ase,

loading and exe
uting the �le foo would give the same result as loading

foo1 and foo2 separately, whi
h in turn would be the same as
on
atenating

the original sour
e �les and
ompiling this larger �le. This makes it easier

to
ompile large programs: one need only break them into smaller pie
es,

ompile the individual pie
es, and
on
atenate the byte �les together.

The following se
tions des
ribe the various aspe
ts of the
ompiler in

more detail.

8.1 Invoking the Compiler

The
ompiler is invoked through the Prolog predi
ate
ompile:

| ?-
ompile(InFile [, OutFile ℄ [, OptionsList ℄).

where optional parameters are en
losed in bra
kets. InFile is the name of

the input (i.e. sour
e) �le; OutFile is the name of the output �le (i.e. byte

ode) �le; OptionsList is a list of
ompiler options (see below).

The input and output �le names must be Prolog atoms, i.e. either begin

with a lower
ase letter or dollar sign `$', and
onsist only of letters, digits,

and unders
ores; or, be en
losed within single quotes. If the output �le name

is not spe
i�ed, it defaults to InFile.out. The list of options, if spe
i�ed, is

a Prolog list, i.e. a term of the form

50

[option1, option2, : : :, optionn ℄.

If left unspe
i�ed, it defaults to the empty list [℄.

In fa
t, the output �le name and the options list may be spe
i�ed in any

order. Thus, for example, the queries

| ?-
ompile('/usr/debray/foo', foo out, [v℄).

and

| ?-
ompile('/usr/debray/foo', [v℄, foo out).

are equivalent, and spe
ify that the Prolog sour
e �le `/usr/debray/foo' is

to be
ompiled in verbose mode (see \Compiler Options" below), and that

the byte
ode is to be generated into the �le foo out.

The
ompile predi
ate may also be
alled with a fourth parameter:

| ?-
ompile(InFile, OutFile, OptionsList, PredList).

where InFile, OutFile andOptionsList are as before;
ompile/4 uni�es PredList

with a list of terms P=N denoting the predi
ates de�ned in InFile, where P

is a predi
ate name and N its arity. PredList, if spe
i�ed, is usually given

as an uninstantiated variable; its prin
ipal use is for setting tra
e points on

the predi
ates in the �le (see Se
tion 6), e.g. by exe
uting

| ?-
ompile('/usr/debray/foo', foo out, [v℄, L),

load(foo out), tra
e(L).

Noti
e that PredList
an only appear in
ompile/4.

8.2 Compiler Options

The following options are
urrently re
ognized by the
ompiler:

a Spe
i�es that an \assembler" �le is to be
reated. The name of the assem-

bler �le is obtained by appending .asl to the sour
e �le name. While

the writing out of assembly
ode slows down the
ompilation pro
ess

to some extent, it allows the assembler to do a better job of optimizing

away indire
t subroutine linkages (sin
e in this
ase the assembler has

assembly
ode for the entire program to work with at on
e, not just a

single predi
ate). This results in
ode that is faster and more
ompa
t.

d Dumps expanded ma
ros to the user (see Se
tion 10).

51

e Expand ma
ros (see Se
tion 10).

t If spe
i�ed, turns o� assembler optimizations that eliminate indire
t bran
hes

through the symbol table in favour of dire
t bran
hes. This is useful in

debugging
ompiled
ode. It is ne
essary if the extension table feature

is to be used.

v If spe
i�ed,
ompiles in \verbose" mode, whi
h
auses messages regarding

progress of
ompilation to be printed out.

8.3 Assembly

The SB-Prolog assembler
an be invoked by loading the
ompiler and using

the predi
ate $asm/3:

| ?- $asm(InFile, OutFile, OptionsList).

where InFile is a Prolog atom whi
h is the name of a WAM assembly sour
e

�le (e.g. the \.asl" �le generated when a Prolog program is
ompiled with

the \a" option), OutFile is an atom whi
h is the name of the intended byte

ode �le, and OptionsList is a list of options. The options re
ognized by the

assembler are:

v \Verbose" mode. Prints out information regarding progress of assembly.

t \Tra
e". If spe
i�ed, the assembler generates
ode to for
e pro
edure
alls

to bran
h indire
tly via the symbol table, instead of using a dire
t

bran
h. This is useful for tra
ing
ompiled
ode. It is ne
essary if the

extension table feature is to be used.

The assembler is intended primarily to support the
ompiler, so the as-

sembly language syntax is quirky in pla
es. The interested reader is advised

to look at the assembly �les resulting from
ompilation with the \a" option

for more on SB-Prolog assembler syntax.

8.4 Compiler Directives

8.4.1 Mode De
larations

The user may de
lare input and output arguments of predi
ates using mode

de
larations. These de
larations, for an n-ary predi
ate p, are of the form

:- mode p(Mode).

52

where Mode
onsists of n mode values; or

:- mode(p, n, ModeList)

where ModeList is a list of mode values of length n. Mode values may be

the following:

, ++ Indi
ates that the
orresponding argument position is always a ground

term in any
all to the predi
ate. The argument is therefore an input

argument.

nv, + Indi
ates that the
orresponding argument position is always a non-

variable term (i.e. is instantiated) in any
all in any
all to the predi-

ate. The argument is therefore an input argument.

f, { Indi
ates that the
orresponding argument position is always an unin-

stantiated variable in any
all to the predi
ate. The argument is there-

fore an output argument.

d, ? Indi
ates that the
orresponding argument may be any term in
alls to

the predi
ate.

For example, a 3-ary predi
ate p whose �rst argument is always a ground

term in a
all, whose se
ond argument is always uninstantiated, and whose

third argument
an be any term, may have its mode de
lared as

:- mode p(++, --, d)

or as

:- mode(p, 3, [
, f, d℄).

Currently, mode information is used by the
ompiler in two ways. First,

it often allows more
ompa
t
ode to be generated. The se
ond use is in

guiding program transformations that allow faster
ode to be generated. For

example, the predi
ate

part([℄, _, [℄, [℄).

part([E|L℄, M, [E|U1℄, U2) :- E =< M, part(L, M, U1, U2).

part([E|L℄, M, U1, [E|U2℄) :- E > M, part(L, M, U1, U2).

exe
utes about 30% faster with the mode de
laration

:- mode part(++, ++, -, -).

than without.

53

8.4.2 Indexing Dire
tives

The
ompiler usually generates an index on the prin
ipal fun
tor of the �rst

argument of a predi
ate. The user may dire
t the
ompiler to generate an

index on any other argument by means of an indexing dire
tive. This is of

the form

:- index(Pred, Arity, IndexArg)

indi
ating that an index should be
reated on the IndexArg

th
argument of

the predi
ate Pred/Arity. All of the values Pred, Arity and IndexArg should

be bound in the dire
tive: Pred should be an atom, Arity a nonnegative

integer, and IndexArg an integer between 0 and Arity. If IndexArg is 0,

then no index is
reated for that predi
ate. As an example, if we wished to

reate an index on the third argument of a 5-ary predi
ate foo, the
ompiler

dire
tive would be

:- index(foo, 5, 3).

An index dire
tive may be pla
ed anywhere in the �le
ontaining the predi-

ate it refers to.

9 Libraries

To des
ribe how libraries are
urrently supported in our system, we must

des
ribe the interrupt handler $unde�ned pred/1. The system keeps a table

of libraries and routines that are needed from ea
h. When a predi
ate is

found to be unde�ned, the table is sear
hed to see if it is de�ned by some

library �le. If so, that �le is loaded (if it hasn't been previously loaded) and

the asso
iation is made between the routine name as de�ned in the library

�le, and the routine name as used by the invoker.

The table of libraries and needed routines is:

de�ned mods(Modname, [pred

1
=arity

1
; : : : ; pred

n
=arity

n
℄).

where Modname is the name of the library. It exports n predi
ate de�nitions.

The �rst exported pred is of arity arity

1
, and needs to be invoked by the

name of pred

1
.

The table of libraries that have already been loaded is given by

loaded mods(Modname).

54

A library �le is a �le of predi
ate de�nitions, together with a fa
t de�ning a

list of predi
ates exported by it; and a set of fa
ts, ea
h of whi
h spe
i�es,

for some other library �le, the predi
ates imported from that library �le.

For example,
onsider a library name `p'. It
ontains a single fa
t, named

p export, that is true of the list of predi
ate/arities that are exported. E.g.

p export([p1/2, p2/4℄)

indi
ates that the module p exports the predi
ates p1/2 and p2/4. For ea
h

library m whi
h
ontains predi
ates needed by the library p, there is a fa
t

for p use, des
ribing what library is needed and the names of the predi
ates

de�ned there that are needed. For example, if library p needs to import

predi
ates ip1/2 and ip2/3 from library q, there would be a fa
t

p use(q,[ip1/2, ip2/3℄)

where q is a module that exports two predi
ates: one 2-ary and one 3-ary.

This list
orresponds to the export list of library q.

The
orresponden
e between the predi
ates in the export list of an ex-

porting library, and those in the import or use list of a library whi
h imports

one or more of them, is by position, i.e. the predi
ate names at the exporting

and importing names may be di�erent, and the asso
iation between names

in the two lists is by the position in the list. If the importing library does

not wish to import one or more of the predi
ates exported by the exporting

module, it may put an anonymous variable in the
orresponding position in

its use list. Thus, for example, if library p above had wished to import only

the predi
ate ip2/3 from library q, the
orresponding use fa
t would be

p use(q, [, ip2/3℄).

The initial set of predi
ates and the libraries from whi
h they are to be

loaded is set up by an initial
all to $pror
/0 (see the SB-Prolog system

�le modlib/sr
/$pror
.P). This predi
ate makes initial
alls to the pred-

i
ate $de�ne mod whi
h set up the tables des
ribed above so that the use

of standard predi
ates will
ause the
orre
t libraries to be loaded in the

$unde�ned pred routine, and the
orre
t names to be used.

10 Ma
ros

SB-Prolog features a fa
ility for the de�nition and expansion of ma
ros that

is fully
ompatible with the runtime system. Its basi
 me
hanism is a simple

55

partial evaluator. It is
alled by both
onsult and
ompile, so that ma
ro

expansion o

urs independently of whether the
ode is interpreted or
om-

piled (but not when asserted). Moreover, the ma
ro de�nitions are retained

as
lauses at runtime, so that invo
ation of ma
ros via
all/1 at runtime (or

from asserted
lauses) does not pose a problem. This means, however, that

if the same ma
ro is used in many di�erent �les, it will be loaded more than

on
e, thus leading to wasted spa
e. This ought to be thought about and

�xed.

The sour
e for the ma
ro expander is in the SB-Prolog system �le modlib/sr
/$ma
.P.

10.1 Defining Macros

`Ma
ros', or predi
ates to be evaluated at
ompile-time, are de�ned by

lauses of the form

Head ::- Body

where fa
ts have `true' as their body. The partial evaluator will expand

any
all to a predi
ate de�ned by ::{/2 that uni�es with the head of only one

lause in ::{/2. If a
all uni�es with the head of more than one
lause in ::{

/2, it will not be expanded Noti
e that this is not a fundamental restri
tion,

sin
e `;' is permitted in the body of a
lause. The partial evaluator also

onverts ea
h de�nition of the form

Head ::- Body.

to a
lause of the form

Head :- Body.

and adds this se
ond
lause to the other \normal"
lauses that were read

from the �le. This ensures that
alls to the ma
ro at runtime, e.g. through

all/1 or from unexpanded
alls in the program do not
ause any problems.

The partial evaluator is a
tually a Prolog interpreter written `purely' in

Prolog, i.e., variable assignments are expli
itly handled. This is ne
essary to

be able to handle impure
onstru
ts su
h as var(X), X=a. As a result this

is a very slow Prolog evaluator.

Sin
e na��ve partial evaluation
an go into an in�nite loop, SB-Prolog's

partial evaluator maintains a depth-bound and will not expand re
ursive

alls deeper than that. The depth is determined by the globalset predi
ate

$ma
 depth. The default value for $ma
 depth is 50. This
an be
hanged

to some other value n by exe
uting

| ?- globalset($ma
 depth(n)).

56

10.2 Macro Expander Options

The following options are re
ognized by the ma
ro expander:

d Dumps all
lauses to the user after expansion. Useful for debugging.

e Expand ma
ros. If omitted, the expander simply
onverts ea
h ::{/2
lause

to a normal :{/2
lause.

v \Verbose" mode. Prints ma
ros that are/are not being expanded.

11 Extension Tables: Memo Relations

Extension tables store the
alls and answers for a predi
ate. If a
all has

been made before, answers are retrieved from the extension table instead of

being re
omputed. Extension tables provide a
a
hing me
hanism for Pro-

log. In addition, extension tables a�e
t the termination
hara
teristi
s of

re
ursive programs. Some Prolog programs, whi
h are logi
ally
orre
t, en-

ter an in�nite loop due to re
ursive predi
ates. An extension table saved on

re
ursive predi
ates
an �nd all answers (provided the set of su
h answers is

�nite) and terminate for some logi
 programs for whi
h Prolog's evaluation

strategy enters an in�nite loop. Iterations over the extension table exe
u-

tion strategy provides
omplete evaluation of queries over fun
tion-free Horn

lause programs.

To be able to use the simple extension table evaluation on a set of pred-

i
ates, the sour
e �le should either be
onsulted, or
ompiled with the t

option (the t option keeps the assembler from optimizing subroutine linkage

and allows the extension table fa
ility to inter
ept
alls to predi
ates).

To use extension table exe
ution, all predi
ates that are to be saved in

the extension table must be passed to et/1. For example,

| ?- et([pred1/1, pred2/2℄), et(pred3/2)

will set up \ET-points" for the for predi
ates pred1/1, pred2/2 and pred3/2,

whi
h will
ause extension tables for these predi
ates to be maintained during

exe
ution. At the time of the
all to et/1, these predi
ates must be de�ned,

either by having been loaded, or through
onsult.

The predi
ate noet/1 takes a list of predi
ate/arity pairs for whi
h ET-

points should be deleted. Noti
e that on
e an ET-point has been set up for

a predi
ate, it will be maintained unless expli
itly deleted via noet/1. If the

de�nition of a predi
ate whi
h has an ET-point de�ned is to be updated,

57

the ET-point must �rst be deleted via noet/1. The predi
ate
an then be

reloaded and a new ET-point established. This is enfor
ed by the failure of

the goal \et(P/N)" if an ET-point already exists for the argument predi
ate.

In this
ase, the following error message will be displayed:

et already defined for: P/N

There are, in fa
t, two extension table algorithms: a simple one, whi
h

simply
a
hes
alls to predi
ates whi
h have ET-points de�ned; and a
om-

plete ET algorithm, whi
h iterates the simple extension table algorithm until

no more answers
an be found. The simple algorithm is more eÆ
ient than

the
omplete one; however, the simple algorithm is not
omplete for
ertain

espe
ially nasty forms of mutual re
ursion, while the
omplete algorithm is.

To use the simple extension table algorithm, predi
ates
an simply be
alled

as usual. The
omplete extension table algorithm may be used via the query

| ?- et star(Query).

The extension table algorithm is intended for predi
ates that are \essen-

tially pure", and results are not guaranteed for
ode using impure
ode. The

extension table algorithm saves only those answers whi
h are not instan
es

of what is already in the table, and uses these answers if the
urrent
all is an

instan
e of a
all already made. For example, if a
all p(X, Y), with X and

Y uninstantiated, is en
ountered and inserted into the extension table, then

a subsequent
all p(X, b) will be
omputed using the answers for p(X, Y)

already in the extension table. Noti
e that this might not work if var/nonvar

tests are used on the se
ond argument in the evaluation of p.

Another problem with using impure
ode is that if an ET predi
ate is

ut over, then the saved
all implies that all answers for that predi
ate were

omputed, but there are only partial results in the ET be
ause of the
ut. So

on a subsequent
all the in
omplete extension table answers are used when

all answers are expe
ted. An example is shown in Figure 11

r(X,Y) :- p(X,Y),q(Y,Z),!,fail.

| ?- r(X,Y) ; p(X,Y).

Figure 3: Extension Table Example

Let p be an ET predi
ate whose evaluation yields many tuples. In the

evaluation of the query, r(X,Y) makes a
all to p(X,Y). Assuming that there

58

is a tuple su
h that q(Y,Z) su

eeds with the �rst p tuple then the evaluation

of p is
ut over. The
all to p(X,Y) in the query uses the extension table

be
ause of the previous
all in the evaluation of r(X,Y). Only one answer

is found, whereas the relation p
ontains many tuples, so the
omputation

is not
omplete. Note that \
uts" used within the evaluation of an ET

predi
ate are ok, as long as they don't
ut over the evaluation of another ET

predi
ate. The evaluation of the predi
ate that uses
uts does not
ut over

any ET pro
essing (su
h as storing or retrieving answers) so that the tuples

that are
omputed are saved. In the following example, the ET is used to

generate prime numbers where an ET point is put on prime/1. Example:

prime(I) :- globalset(globalgenint(2)),fail. /* Generating Primes */

prime(I) :- genint(I), not(div(I)).

div(I) :- prime(X), 0 is I mod X.

genint(N) :-

repeat,

globalgenint(N),

N1 is N+1,

globalset(globalgenint(N1)).

The following summarizes the library predi
ates supporting the extension

table fa
ility:

et(L) Sets up an ET-point on the predi
ates L, whi
h
auses
alls and

answers to these predi
ates to be saved in an \extension table". L

is either a term Pred/Arity, where Pred is a predi
ate symbol and

Arity its arity, or a set of su
h terms represented as a list. L must be

instantiated, and the predi
ates spe
i�ed in it de�ned, at the time of

the
all to et/1. Gives error messages and fails if any of the predi
ates

in L is unde�ned, or if an ET-point already exists on any of them; in

this
ase, no ET-point is set up on any of the predi
ates in L.

et star(Goal) Invokes the
omplete extension table algorithm on the goal

Goal.

et points(L) Uni�es L with a list of predi
ates for whi
h an ET-point is

de�ned. L is the empty list [℄ if there are no ET-points de�ned.

59

noet(L) Deletes ET-points on the predi
ates spe
i�ed in L. L is either a

term P/N , where P is the name of a predi
ate and N its arity, or a

set of su
h terms represented as a list. Gives error messages and fails if

there is no ET-point on any of the predi
ates spe
i�ed in L. Deleting

an ET-point for a predi
ate also removes the
alls and answers stored

in the extension table for that predi
ate. The extension tables for

all predi
ates for whi
h ET-points are de�ned may be deleted using

et points/1 in
onjun
tion with noet/1.

L must be instantiated at the time of the
all to noet/1.

et remove(L) Removes both
alls and answers for the predi
ates spe
i�ed

in L. In e�e
t, this results in the extension table for these predi
ates

to be set to empty. L must be instantiated at the time of the
all to

either a term P/N , where P is a predi
ate with arity N , or a list of

su
h terms. An error o

urs if any of the predi
ates in L does not have

an ET-point set.

All extension tables
an be emptied by using et points/1 in
onjun
tion

with et remove/1.

et answers(P=N , Term) Retrieves the answers stored in the extension ta-

ble for the predi
ate P/N in Term one at a time. Term is of the form

P (t1; : : : ; tN). An error results and et answers/2 fails if P=N is not

fully spe
i�ed (ground), or if P=N does not have an ET-point set.

et
alls(P/N, Term) Retrieves the
alls stored in the extension table for

the predi
ate P=N in Term one at a time. Term is of the form

P (t1; : : : ; tN). An error results and et
alls/2 fails if P=N is not fully

spe
i�ed (ground), or if P/N does not have an ET-point set.

12 De�nite Clause Grammars

De�nite
lause grammars are an extension of
ontext free grammars, and

may be
onveniently expressed in Prolog. A grammar rule in Prolog has the

form

Head --> Body.

with the interpretation \a possible form for Head is Body". Extra
onditions,

in the form of expli
it Prolog literals or
ontrol
onstru
ts su
h as if-then-else

(->) or
ut (!), may be in
luded in Body.

60

The syntax of DCGs supported by SB-Prolog is as follows:

1. A non-terminal symbol may be any Prolog term other than a variable.

2. A terminal symbol may be any Prolog term. To distinguish terminals

from nonterminals, a sequen
e of terminal symbols

a; b;
; d; : : :

is written as a Prolog list [a; b;
; d; : : :℄, with the empty sequen
e writ-

ten as the empty list [℄. If the terminal symbols are ASCII
hara
ter

odes, they
an be written (as elsewhere) as strings.

3. Extra
onditions, in the form of Prolog literals,
an be in
luded in the

right-hand side of a rule by en
losing su
h
onditions in
urly bra
es,

f and g. E.g., one
an write

natnum(X) --> finteger(X), X >= 0g.

4. The left hand side of a rule
onsists of a single nonterminal. Noti
e

that \push-ba
k lists" are thus not supported.

5. The right hand side of a rule may
ontain alternatives (written using

the disjun
tion operator `;' or |), and
ontrol primitives su
h as if-then-

else (->), not/1 and
ut (`!'). The use of not/1 on the right hand side of

grammar rules is not re
ommended, however, be
ause their semanti
s

in this
ontext is murky at best. All other
ontrol primitives, e.g.

repeat/0, must expli
itly be en
losed within
urly bra
es if they are

not to be interpreted as nonterminals.

Ex
ept for the restri
tion of lists of terminals in the left hand sides of

rules, the translation of DCGs in SB-Prolog is very similar to that in Quintus

Prolog.

Library predi
ates supporting DCGs are the following:

d
g(Rule, Clause) Su

eeds if the DCG rule Rule
orresponds to the Pro-

log
lause Clause. At the time of
all, Rule must be bound to a term

whose prin
ipal fun
tor is ->/2.

phrase(Phrase, List) The usual way to
ommen
e exe
ution of grammar

rules. The list List is a phrase (i.e., sequen
e of terminals) generated

61

by Phrase a

ording to the
urrent grammar rules. Phrase is a non-

terminal (in general, the right hand side of a grammar rule), and must

be instantiated to a nonvariable term in the
all. If List is bound to

a list of terminals in the
all, then the goal
orresponds to parsing

List; if List is unbound in the
all, then the grammar is being used for

generation.

expand term(T1, T2) This predi
ate is used to transform terms that are

read in, when a �le is
onsulted or
ompiled. The usual use is to trans-

form grammar rules into Prolog
lauses: if T1 is a grammar rule, then

T2 is the
orresponding Prolog
lause. Users may de�ne their own

transformations by de�ning the predi
ate term expansion/2. When

a term T1 is read in when a �le is being
ompiled or
onsulted, ex-

pand term/2 �rst
alls term expansion/2: if the expansion su

eeds,

the transformed term so obtained is used; otherwise, if T1 is a gram-

mar rule, then it is expanded using d
g/2; otherwise, T1 is used as

is.

`C'(S1, Terminal, S2) Used to handle terminal symbols in the expansion

of grammar rules. Not usually of dire
t use to the user. This is de�ned

as

`C'([X|S℄, X, S).

13 Pro�ling Programs

There is an experimental utility for pro�ling programs intera
tively. Two

kinds of pro�ling are supported: one may
ount the number of
alls to a

predi
ate, or
ompute the time spent in a predi
ate. It is important that the

predi
ates being pro�led are either
onsulted, or
ompiled with the t option,

so that
alls to the relevant predi
ates
an be inter
epted by the pro�ler.

To use the pro�ler, predi
ates whose
alls are to be
ounted must be

passed to
ount/1, e.g.

| ?--
ount([p/1, q/2℄),
ount(r/3).

will set up \
ount-points" on the predi
ates p/1, q/2 and r/3. Predi
ates

whose
alls are to be timed have to be passed to time/1, e.g.

| ?-- time([s/1, t/2℄), time(u/3).

62

will set up \time-points" on the predi
ates s/1, t/2 and u/3. It is possi-

ble to set both
ount-points and time-points on the same predi
ate. After

ount-points and time-points have been set, the program may be exe
uted as

many times as desired: the pro�ling system will a

umulate
all
ounts and

exe
ution times for the appropriate predi
ates. Exe
ution pro�les may be

obtained using the predi
ates prof stats/0 or prof stats/1. Using prof stats/0

to display the exe
ution pro�le will
ause the
all
ounts and exe
ution times

of predi
ates being pro�led to be reset to 0 (this may be avoided by using

prof stats/1).

It should be noted that in this
ontext, the \exe
ution time" for a predi-

ate is an estimate of the total time spent in the subtrees below
alls to that

predi
ate (in
luding failed subtrees): thus, the exe
ution time �gures may

be dilated slightly if the subtree below a timed predi
ate
ontains predi
ates

that are being pro�led, be
ause of the time taken for updating the
all
ounts

and exe
ution times. For ea
h predi
ate, the exe
ution time is displayed as

the fra
tion of time spent, in
omputation in subtrees under
alls to that

predi
ate, relative to the time elapsed from the last time pro�ling was timed

on or the last time pro�ling statisti
s were taken, whi
hever was more re
ent.

Bugs: May behave bizarrely if a predi
ate being pro�led
ontains
uts.

The following summarizes the library predi
ates supporting pro�ling:

ount(L) Sets up a
ount-point on the predi
ates L, whi
h
auses
alls to

these predi
ates to be
ounted, and turns pro�ling on. L is either a

term Pred/Arity, where Pred is a predi
ate symbol and Arity its arity,

or a set of su
h terms represented as a list. L must be instantiated, and

the predi
ates spe
i�ed in it de�ned, at the time of the
all to
ount/1.

time(L) Sets up a time-point on the predi
ates L, whi
h
auses exe
ution

times for
alls to these predi
ates to be a

umulated, and turns pro�l-

ing on. L is either a term Pred/Arity, where Pred is a predi
ate symbol

and Arity its arity, or a set of su
h terms represented as a list. L must

be instantiated, and the predi
ates spe
i�ed in it de�ned, at the time

of the
all to time/1.

no
ount(L) Deletes the
ount-point on the predi
ates L. L is either a term

Pred/Arity, where Pred is a predi
ate symbol and Arity its arity, or a

set of su
h terms represented as a list. L must be instantiated, and the

predi
ates spe
i�ed in it de�ned, at the time of the
all to no
ount/1.

notime(L) Deletes the time-point on the predi
ates L. L is either a term

Pred/Arity, where Pred is a predi
ate symbol and Arity its arity, or a

63

set of su
h terms represented as a list. L must be instantiated, and the

predi
ates spe
i�ed in it de�ned, at the time of the
all to time/1.

pro�ling Displays information about whether pro�le mode is on or not, and

lists predi
ates that have
ount- and time-points set on them.

prof reset(L) Resets
all
ounts and/or exe
ution times for the predi
ates

L. L is either a term Pred/Arity, where Pred is a predi
ate symbol and

Arity its arity, or a set of su
h terms represented as a list. L must be

instantiated, and the predi
ates spe
i�ed in it de�ned, at the time of

the
all to prof reset/1.

reset
ount(L) Resets
all
ounts for the predi
ates L. L is either a term

Pred/Arity, where Pred is a predi
ate symbol and Arity its arity, or a

set of su
h terms represented as a list. L must be instantiated, and the

predi
ates spe
i�ed in it de�ned, at the time of the
all to reset
ount/1.

resettime(L) Resets exe
ution times for the predi
ates L. L is either a

term Pred/Arity, where Pred is a predi
ate symbol and Arity its arity,

or a set of su
h terms represented as a list. L must be instantiated,

and the predi
ates spe
i�ed in it de�ned, at the time of the
all to

resettime/1.

pro�le Turns pro�ling on. This
auses subsequent exe
ution of predi
ates

with
ount- or time-points to be pro�led, and is a no-op if there are no

su
h predi
ates. The predi
ates
ount/1 and time/1
ause pro�ling to

be turned on automati
ally.

nopro�le Turns pro�ling o�. This
auses
ount- and time-points to be

ignored.

timepreds(L) Uni�es L to a list of terms P=N where the predi
ate P of

arity N has a time point set on it.

ountpreds(L) Uni�es L to a list of terms P=N where the predi
ate P of

arity N has a
ount point set on it.

prof stats Causes the
all
ounts and/or exe
ution times a

umulated sin
e

the last
all to prof stats/0 to be printed out for predi
ates that are

being pro�led. The exe
ution times are given as fra
tions of the total

time elapsed sin
e the last time pro�ling was turned on, or the last time

prof stats was
alled, whi
hever was most re
ent. This also results in

64

the
all
ounts and relative exe
ution times of these predi
ates being

reset to 0. Equivalent to prof stats(1).

prof stats(N) Causes the
all
ounts and/or exe
ution times a

umulated

sin
e the last
all to prof stats/0 to be printed out for predi
ates that

are being pro�led. The exe
ution times are given as fra
tions of the

total time elapsed sin
e the last time pro�ling was turned on, or the

last time prof stats was
alled, whi
hever was most re
ent. If N is 1,

then this also results in the
all
ounts and exe
ution times of these

predi
ates being reset to 0; otherwise, the
all
ounts and exe
ution

times are not reset.

14 Other Library Utilities

The SB-Prolog library
ontains various other utilities, some of whi
h are

listed below.

$append(X, Y , Z) Su

eeds if list Z is the
on
atenation of lists X and

Y .

$member(X, L) Che
ks whether X uni�es with any element of list L, su
-

eeding more than on
e if there are multiple su
h elements.

$member
hk(X, L) Similar to $member/2, ex
ept that $member
hk/2 is

deterministi
, i.e. does not su

eed more than on
e for any
all.

$reverse(L, R) Su

eeds if R is the reverse of list L. If L is not a fully

determined list, i.e. if the tail of L is a variable, this predi
ate
an

su

eed arbitrarily many times.

$merge(X, Y , Z) Su

eeds if Z is the list resulting from \merging" lists

X and Y , i.e. the elements of X together with any element of Y not

o

urring in X. If X or Y
ontain dupli
ates, Z may also
ontain

dupli
ates.

$absmember(X, L) Similar to $member/2, ex
ept that it
he
ks for iden-

tity (through ==/2) rather than uni�ability (through =/2) of X with

elements of L.

$nthmember(X, L, N) Su

eeds if the N

th
element of the list L uni�es

with X. Fails if N is greater than the length of L. Either X and L, or

L and N , should be instantiated at the time of the
all.

65

$member2(X, L) Che
ks whether X uni�es with any of the a
tual ele-

ments of L. The only di�eren
e between this and $member/2 is on lists

with a variable tail, e.g. [a, b,
 | _ ℄: while $member/2 would in-

sert X at the end of su
h a list if it did not �nd it, $member2/2 only

he
ks for membership but does not insert it into the list if it is not

there.

length(L, N) Su

eeds if the length of the list L is N . This predi
ate

is deterministi
 if L is instantiated to a list of de�nite length, but is

nondeterministi
 if L is a variable or has a variable tail.

subsumes(X, Y) Su

eeds if the term X subsumes the term Y (i.e. if Y is

an instan
e of X).

15 CREDITS

The initial development of SB-Prolog, from 1984 to August 1986, was at

SUNY at Stony Brook, where Versions 1.0 and 2.0 were developed. Sin
e

August 1986, its development has
ontinued at the University of Arizona,

Tu
son.

A large number of people were involved, at some time or another, with

the Logi
 Programming group at SUNY, Stony Brook, and deserve
redit

for helping to bring SB-Prolog to its present form. David S
ott Warren led

the proje
t at Stony Brook. Most of the simulator and builtins were written

by Jiyang Xu and David S. Warren (I added the later stu�, Versions 2.1

onwards). Mu
h of the library was also by David, with some
ontributions

from me. Weidong Chen did the work on
lause indexing. Suzanne Dietri
h

wrote the Extension Table pa
kage. I wrote most of the
ompiler.

Several people helped debug previous versions, in
luding Leslie Rohde;

Bob Be
k of Sequent Computers; and Mark Gooley of the University of

Illinois at Urbana-Champaign.

Spe
ial thanks are due to Ri
hard O'Keefe, who
ontributed the Prolog

ode for the parser (in the form of the predi
ates read/1 and read/2), the

C
ode for the tokenizer, and the
ode for setof/3 and bagof/3.

I am grateful to Fernando Pereira for permission to use material from

the C-Prolog manual for the des
riptions of Prolog syntax and many of the

builtins in this User Manual. Steve Kelem produ
ed the LateX version of

this manual from an earlier tro� version.

| S.K.D.

66

Index

!/0, 18, 26, 28, 58, 60, 61, 76

< =2, 24

=< =2, 24

= n = =2, 24

> =2, 24

>=/2, 24

n=/2, 25

n == =2, 30

^, 29

^=2, 29

,/2, 25

-> =2, 26

:{/1, 11, 16, 57

::{/2, 56

;/2, 25

=../2, 27

=/2, 25

=:=/2, 24

==/2, 30

?=/2, 25

< =2, 30

=< =2, 31

> =2, 30

>= =2, 31

$absmember/2, 65

$allo
 bu�/5, 42

$append/3, 65

$asm/3, 52

$assertf allo
 t, 43

$
urrent atom/2, 36

$
urrent fun
tor/3, 36

$
urrent predi
ate/3, 37

$db add
lref/7, 43

$db assert fa
t/5, 43

$db
all prref/2, 44

$db
all prref s/2, 44

$db get
lauses/3, 44

$db new prref/3, 43

$exists/1, 21

$getenv/2, 38

$member/2, 65

$member2/2, 66

$member
hk/2, 65

$merge/3, 65

$nthmember/3, 65

$reverse/2, 65

$tra
e/0, 47

$untra
e/0, 47

$interrupt/2, 49

`C'/3, 62

abolish

/1, 35

/2, 35

abort

tra
e fa
ility, 45

abort/0, 38, 38

allo
 heap/2, 32

allo
 perm/2, 32

arg/3, 27, 77

arguments

pro
essing all from a term, 77

arithmeti
, 22

assembler

options, 52

assembly, 52

assert, 33

/1, 33

/2, 33

/4, 34

assert union/2, 33

asserta

67

/1, 33

/2, 33

asserti/2, 33

assertz

/1, 33

/2, 33

atom/1, 26

atomi
/1, 27

atoms, 11

ba
ktra
k points, 75

bagof/3, 29

behaviour, standard exe
ution, 18

break/0, 38

bu�ers, 31

builtins, adding, 79

byte
ode

�les, 5{8, 11, 47, 52

ompiler, 50

on
atenating, 9, 50

loading, 9

overwriting tra
e points, 45

translator, 7

all/1, 28

all ref

/2, 42

/3, 42

hara
ter I/O, 22

lause, 17

/2, 34

/3, 35

mplib, 7, 50

ompare/3, 31

omparison of terms, 30

ompile

/1, 8

/2, 8

/3, 8

/4, 8

Compiler, 50

dire
tives, 52

invoking, 50

options, 51

ompiling programs, 8

onlength/2, 28, 32

onstants, 11

onsult, 8, 10

/1, 10

/2, 10

options, 10

onsulting programs, 10

ontrol, extra, 26

ount/1, 63

ountpreds/1, 64

putime/1, 38

Credits, 66

urrent atom/1, 36

urrent fun
tor/2, 36

urrent predi
ate/2, 37

ut, 18, 26, 28, 58, 60{61, 76

uts and If-Then-Else, 18

database, internal, 35

d
g/2, 61

debug/0, 46

debugging, 44

/0, 46

de
larations

mode, 52

de�nite
lause grammars, 60

de�nitions

ma
ros, 56

dire
tives

Compiler, 52

indexing, 54

dire
tories, system, 7

display/1, 21

68

dynami
 loader sear
h path, 6

eÆ
ien
y,
oding for, 75

environmental predi
ates, 38

erase/1, 36

et/1, 59

et answers/2, 60

et
alls/2, 60

et points/1, 59

et remove/1, 60

et star/1, 59

eval/2, 24

evaluable predi
ates, 19, 72

exe
uting programs, 8

exe
ution behaviour, standard, 18

exe
ution dire
tives, 11

exoti
a, 42

exp/2, 25

expand term/2, 62

extension tables

memo relations, 57

fail/0, 26

�le handling, 20

�ndall/3, 29

oat/1, 27

oat
/3, 24

oating point numbers, uni�
ation

of, 19

oor/2, 24

fun
tor/3, 27

gennum/1, 41

gensym/2, 42

get/1, 22

get0/1, 22

getting started, 6

global values, 41

globalset/1, 41

grammars

de�nite
lause, 60

high-level tra
ing, 44

I/O

term, 21

If-Then-Else and
uts, 18

index/3, 33, 54

indexing, 34

dire
tives, 54

on
oating point, 19

input, 20

instan
e/2, 36

integer/1, 26

integers, 11

internal database, 35

interrupts, 49

invoking the Compiler, 50

invoking the simulator, 7, 47

is/2, 24

is bu�er/1, 27

keysort/2, 31

length/2, 66

libraries, 54

linking, dynami
 sear
h path, 6

listing

/0, 36

/1, 36

load/1, 9

loader, dynami
 sear
h path, 6

loading byte
ode �les, 9

low-level predi
ates, 42

low-level tra
ing, 47

Ma
ro Expander options, 57

ma
ros, 55

de�nition of, 56

memo relations

69

extension tables, 57

meta-logi
al predi
ates, 26

mode

de
larations, 52

values, 53

mode/3, 53

modi�
ation of the program, 32

name/2, 28

nl/0, 22

no
ount/1, 63

nodebug/0, 46

nodynload/2, 39

noet/1, 60

nonvar/1, 26

nopro�le/0, 64

nospy/1, 46

not uni�able, see n=/2

not/1, 26

notime/1, 63

number/1, 27

o

urs
he
k

uni�
ation without, 18

op/3, 15, 38

operational semanti
s, 18

operators, 14

options

Compiler, 51

Ma
ro Expander, 57

Simulator, 48

output, 20

path, sear
h, 6

phrase/2, 61

portray
lause/2, 22

portray term/2, 22

predi
ate property/2, 37

predi
ates

evaluable, 72

predi
ates, environmental, 38

predi
ates, evaluable, 19

predi
ates, low-level, 42

predi
ates, meta-logi
al, 26

print/1, 21

print al/2, 22

print ar/2, 22

prof reset/1, 64

prof stats

/0, 64

/1, 65

pro�le/0, 64

pro�ling programs, 62

pro�ling/0, 64

program, state of, 36

put/1, 22

query, 17

query evaluator, 7, 47

read/1, 21

real/1, 26

re
onsult, 10

re
orda/3, 35

re
orded/3, 35

re
ordz/3, 35

registers

minimizing data movement be-

tween, 77

repeat/0, 26

reset
ount/1, 64

resettime/1, 64

restore/1, 38

retra
t/1, 35

rounding, 23

rule, 17

save/1, 38

sear
h path, 6

see/1, 20

70

seeing/1, 20

seen/0, 20

semanti
s, operational, 18

setof/3, 29

sets, 29

SIMPATH, 6, 9

Simulator, 47

options, 48

simulator, invoking, 7, 47

sin/2, 25

sort/2, 31

spy/1, 46

spypreds/1, 47

square/2, 25

standard exe
ution behaviour, 18

starting, 6

state of the program, 36

statisti
s

/0, 39

/2, 39

strings, 13

stru
ture/1, 27

subsumes/2, 66

symtype/2, 40

syntax, 11

sys
all/3, 40

system dire
tories, 7

system/1, 40

tab/1, 22

tell/1, 21

telling/1, 21

term

pro
essing all arguments of, 77

term I/O, 21

term expansion/2, 62

terms, 11

omparison of, 30

testing uni�ability, 78

time/1, 63

timepreds/1, 64

told/0, 21

tra
e

options, 45

tra
e/1, 44

tra
epreds/1, 46

tra
ing

high-level, 44

low-level, 47

trimbu�/3, 32

true/0, 25

unde�ned pred/1, 8

uni�ability

testing, 78

uni�
ation

oating point numbers, 19

without o

urs
he
k, 18

Unix

system
alls, 40

untra
e/1, 46

var/1, 26

WAM, 5, 19, 49, 52

write/1, 21

writename/1, 21

writeq/1, 21

writeqname/1, 21

71

A Evaluable Predi
ates of SB-Prolog

An entry of \B" indi
ates a builtin predi
ate, \I" an inline predi
ate, and \L"

a library predi
ate. A \P" indi
ates that the predi
ate is handled by the pre-

pro
essor during
ompilation and/or
onsulting. A \D" denotes a
ompiler

dire
tive.

!/0 (P), 26

< =2 (I), 24

=< =2 (I), 24

= n = =2 (I), 24

> =2 (I), 24

>=/2 (I), 24

n =/2 (I), 25

n == =2 (B), 30

^=2 (L), 29

,/2 (I), 25

-> =2 (P), 26

:{/1 (P), 11

::{/2 (P), 56

;/2 (I), 25

=../2 (L), 27

=/2 (I), 25

=:=/2 (I), 24

==/2 (B), 30

?=/2 (I), 25

< =2 (B), 30

=< =2 (B), 31

> =2 (B), 30

>= =2 (B), 31

$absmember/2 (L), 65

$allo
 bu�/5 (L), 42

$append/3 (L), 65

$asm/3, 52

$assertf allo
 t (L), 43

$
urrent atom/2 (L), 36

$
urrent fun
tor/3 (L), 36

$
urrent predi
ate/3 (L), 37

$db add
lref/7 (L), 43

$db assert fa
t/5 (L), 43

$db
all prref/2 (L), 44

$db
all prref s/2 (L), 44

$db get
lauses/3 (L), 44

$db new prref/3 (L), 43

$exists/1 (B), 21

$getenv/2 (L), 38

$member/2 (L), 65

$member2/2 (L), 66

$member
hk/2 (L), 65

$merge/3 (L), 65

$nthmember/3 (L), 65

$reverse/2 (L), 65

$tra
e/0 (L), 47

$untra
e/0 (L), 47

$interrupt/2 (L), 49

`C'/3 (L), 62

abolish/1 (L), 35

abolish/2 (L), 35

abort/0 (B), 38

allo
 heap/2 (L), 32

allo
 perm/2 (L), 32

arg/3 (I), 27

assert/1 (L), 33

assert/2 (L), 33

assert/4 (L), 34

assert union/2 (L), 33

asserta/1 (L), 33

asserta/2 (L), 33

asserti/2 (L), 33

assertz/1 (L), 33

assertz/2 (L), 33

atom/1 (B), 26

72

atomi
/1 (B), 27

bagof/3 (L), 29

break/0 (L), 38

all/1 (P), 28

all ref/2 (L), 42

all ref/3 (L), 42

lause/2 (L), 34

lause/3 (L), 35

ompare/3 (B), 31

ompile/1 (L), 8

ompile/2 (L), 8

ompile/3 (L), 8

ompile/4 (L), 8

onlength/2 (B), 28

onlength/2 (L), 32

onsult/1 (L), 10

onsult/2 (L), 10

ount/1 (L), 63

ountpreds/1 (L), 64

putime/1 (B), 38

urrent atom/1 (L), 36

urrent fun
tor/2 (L), 36

urrent predi
ate/2 (L), 37

d
g/2 (L), 61

debug/0 (L), 46

debugging/0 (L), 46

display/1 (L), 21

erase/1 (L), 36

et/1 (L), 59

et answers/2 (L), 60

et
alls/2 (L), 60

et points/1 (L), 59

et remove/1 (L), 60

et star/1 (L), 59

eval/2 (L), 24

exp/2 (B), 25

expand term/2 (L), 62

fail/0 (I), 26

�ndall/3 (L), 29

oat/1 (I), 27

oat
/3 (B), 24

oor/2 (B), 24

fun
tor/3 (L), 27

gennum/1 (L), 41

gensym/2 (L), 42

get/1 (B), 22

get0/1 (B), 22

globalset/1 (L), 41

index/3 (D), 54

instan
e/2 (L), 36

integer/1 (I), 26

is/2 (L), 24

is bu�er/1 (B), 27

keysort/2 (L), 31

length/2 (L), 66

listing/0 (L), 36

listing/1 (L), 36

load/1 (B), 9

mode/3 (D), 53

name/2 (B), 28

nl/0 (B), 22

no
ount/1 (L), 63

nodebug/0 (L), 46

nodynload/2 (L), 39

noet/1 (L), 60

nonvar/1 (I), 26

nopro�le/0 (L), 64

nospy/1 (L), 46

not/1 (P), 26

notime/1 (L), 63

73

number/1 (B), 27

op/3 (L), 15, 38

phrase/2 (L), 61

portray
lause/2 (L), 22

portray term/2 (L), 22

predi
ate property/2 (L), 37

print/1 (L), 21

print al/2 (L), 22

print ar/2 (L), 22

prof reset/1 (L), 64

prof stats/0 (L), 64

prof stats/1 (L), 65

pro�le/0 (L), 64

pro�ling/0 (L), 64

put/1 (B), 22

read/1 (B), 21

real/1 (I), 26

re
orda/3 (L), 35

re
orded/3 (L), 35

re
ordz/3 (L), 35

repeat/0 (L), 26

reset
ount/1 (L), 64

resettime/1 (L), 64

restore/1 (B), 38

retra
t/1 (L), 35

save/1 (B), 38

see/1 (B), 20

seeing/1 (B), 20

seen/0 (B), 20

setof/3 (L), 29

sin/2 (B), 25

sort/2 (L), 31

spy/1 (L), 46

spypreds/1 (L), 47

square/2 (B), 25

statisti
s/0 (B), 39

statisti
s/2 (L), 39

stru
ture/1 (B), 27

subsumes/2 (L), 66

symtype/2 (B), 40

sys
all/3 (B), 40

system/1 (B), 40

tab/1 (B), 22

tell/1 (B), 21

telling/1 (B), 21

term expansion/2 (U), 62

time/1 (L), 63

timepreds/1 (L), 64

told/0 (B), 21

tra
e/1 (L), 44

tra
epreds/1 (L), 46

trimbu�/3 (L), 32

true/0 (I), 25

unde�ned pred/1 (L), 8

untra
e/1 (L), 46

var/1 (I), 26

write/1 (L), 21

writename/1 (B), 21

writeq/1 (L), 21

writeqname/1 (B), 21

74

B A Note on Coding for EÆ
ien
y

The SB-Prolog system tends to favour programs that are relatively pure.

Thus, for example, asserts tend to be quite expensive, en
ouraging the user

to avoid them if possible. This se
tion points out some synta
ti

onstru
ts

that lead to the generation of eÆ
ient
ode. These involve (i) avoiding the

reation of ba
ktra
k points; and (ii) minimizing data movement between

registers. Optimization of logi
 programs is an area of ongoing resear
h, and

we expe
t to enhan
e the
apabilities of the system further in future versions.

B.1 Avoiding Creation of Backtrack Points

Sin
e the
reation of ba
ktra
k points is relatively expensive, program ef-

�
ien
y may be improved substantially by using
onstru
ts that avoid the

reation of ba
ktra
k points where possible. The SB-Prolog
ompiler re
og-

nizes
onditionals involving
ertain
omplementary inline tests, and gen-

erates
ode that does not
reate
hoi
e points for su
h
ases. Two in-

line tests p(t1; : : : ; tn) and q(t1; : : : ; tn) are
omplementary if and only if

p(t1;: : : ; tn) � not(q(t1; : : : ; tn)). For example, the literals `X > Y ' and

`X =< Y ' are
omplementary. At this point,
omplementary tests are

re
ognized as su
h only if their argument tuples are identi
al. The inline

predi
ates that are treated in this manner, with their
orresponding
omple-

mentary literals, are shown in Table B.1. The synta
ti

onstru
ts re
ognized

Inline Test Complementary Test

> =2 =< =2

=< =2 > =2

>= =2 < =2

< =2 >= =2

=:=/2 = n = =2

= n = =2 =:=/2

?=/2 n = =2

n = =2 ?=/2

var/1 nonvar/1

nonvar/1 var/1

Table 5: Complementary Tests Re
ognized by the Compiler

are:

75

(i) Disjun
ts of the form

head(: : :): �(test(t1; : : : ; tn); : : :); (not(test(t1; : : : ; tn); : : :)):

or

head(: : :): �(test(t1; : : : ; tn); : : :); ((
omp test(t1; : : : ; tn); : : :)):

where test is one of the inline tests in the table above, and
omp test

the
orresponding
omplementary test (note that the arguments to test

and
omp test have to be identi
al).

(ii) Conditionals of the form

head: �(test1; : : : ; testn)� > True Case;False Case:

or

head: �(test1; : : : ; testn)� > True Case;False Case:

where ea
h testi is an inline test, as mentioned in the table above.

The
ode generated for these
ases involves a test and
onditional bran
h,

and no
hoi
e point is
reated. We expe
t future versions of the translator

to re
ognize a wider
lass of
omplementary tests.

Noti
e that this dis
ourages the use of expli
it
uts. For example, whereas

a
hoi
e point will be
reated for

part(M,[E|L℄,U1,U2) :-

((E =< M, !, U1 = [E|U1a℄, U2 = U2a) ;

(U1 = U1a, U2 = [E|U2a℄)),

part(M,L,U1a,U2a).

no
hoi
e point will be
reated for either

part(M,[E|L℄,U1,U2) :-

(E =< M -->

(U1 = [E|U1a℄, U2 = U2a) ;

(U1 = U1a, U2 = [E|U2a℄)),

part(M,L,U1a,U2a).

76

or

part(M,[E|L℄,U1,U2) :-

((E =< M, U1 = [E|U1a℄, U2 = U2a) ;

(E > M, U1 = U1a, U2 = [E|U2a℄)),

part(M,L,U1a,U2a).

Thus, either of the two later versions will be more eÆ
ient than the

version with the expli
it
ut (this is a design de
ision we have
ons
iously

made, in the hope of dis
ouraging blatantly non-de
larative
ode where eÆ-

ient de
larative
ode
an be written).

B.2 Minimizing Data Movement Between Registers

Data movement between registers for parameter passing may be minimized

by leaving variables in the same argument position wherever possible. Thus,

the
lause

p(X,Y) :- p1(X,Y,0).

is preferable to

p(X,Y) :- p1(0,X,Y).

be
ause the �rst de�nition leaves the variables X and Y in the same argu-

ment positions (�rst and se
ond, respe
tively), while the se
ond de�nition

does not.

B.3 Processing All Arguments of a Term

It is often the
ase that we wish to pro
ess ea
h of the arguments of a term in

turn. For example, to de
ide whether a
ompound term is ground, we have

to
he
k that ea
h of its arguments is ground. One possibility is to
reate a

list of those arguments, and traverse the list pro
essing ea
h element. Using

this approa
h, a predi
ate to
he
k for groundness would be

ground(T) :- atomi
(T).

ground(T) :- stru
ture(T), T =.. [| Args℄, groundargs(Args).

groundargs([℄).

groundargs([A | ARest℄) :-- ground(A), groundargs(ARest).

This is not the most eÆ
ient way to pro
ess all the arguments of a term,

be
ause it involves the
reation of intermediate lists, whi
h is expensive both

in spa
e and time. A mu
h better alternative is to use arg/3 to index into the

77

term and retrieve arguments. Using this approa
h, the ground/1 predi
ate

above would be written as

ground(T) :- atomi
(T).

ground(T) :- stru
ture(T), fun
tor(T, P, N), groundargs(1, N, T).

groundargs(M, N, T) :-

M =< N ->

(arg(M, T, A), ground(A), M1 is M + 1, groundargs(M1, N, T)) ;

true.

The se
ond approa
h is likely to be more eÆ
ient than the �rst in SB-Prolog.

If the arguments of the term do not need to be pro
essed in as
ending

order, then it is more eÆ
ient to pro
ess them in des
ending order using

arg/3 to a

ess them. For example, the predi
ate for groundness
he
king

ould be written as

ground(T) :- atomi
(T).

ground(T) :- stru
ture(T), fun
tor(T, P, N), groundargs(N, T).

groundargs(M, T) :-

M =:= 0 ->

true ;

(arg(M, T, A), ground(A), M1 is M - 1, groundargs(M1, T)).

This is even more eÆ
ient than the earlier version, be
ause (i) groundargs

needs to have one fewer parameter to be passed to it at ea
h iteration; and

(ii) testing \M =:= 0" is simpler and more eÆ
ient than
he
king \M =<

N", and takes fewer ma
hine instru
tions.

B.4 Testing Unifiability

Often, it is ne
essary to
he
k whether or not a term has a parti
ular value.

If we know that the term will be bound to a number, we
an use the evaluable

predi
ates =:=/2 or = n = =2, as explained earlier. For other values, it may

often be
heaper, in the appropriate
ir
umstan
es, to use the predi
ates

?=/2 or n = =2. For example,
onsider a predi
ate p/2 that
alls q/1 with

its se
ond argument if its �rst argument uni�es with a, and r/1 otherwise.

A na��ve de�nition might be

p(a, X) :- !, q(X).

p(Y, X) :- r(X).

However, the
all to p/2 results in the (temporary)
reation of a ba
ktra
k

point. A solution that avoids this ba
ktra
k point
reation is

p(Y, X) :- Y ?= a -> q(X) ; r(X).

78

Of
ourse, if the argument order in p/2
ould be reversed in this
ase, then

data movement would be redu
ed even further (see above), and the
ode

would be even more eÆ
ient:

p(X, Y) :- Y ?= a -> q(X) ; r(X).

C Adding Builtins to SB-Prolog

Adding a builtin involves writing the C
ode for the desired
ase and in-

stalling it into the simulator. The �les in the dire
tory sim/builtin
ontain

the C
ode for the builtin predi
ates supported by the system. The following

pro
edure is to be followed when adding a builtin to the system:

1. Installing C Code:

(a) Go to the dire
tory sim/builtin.

(b) Look at the#de�nes in the �le builtin.h, and
hoose a number

N1 (between 0 and 255) whi
h is not in use to be the builtin

number for the new builtin.

(
) Add to the �le builtin.h the line

#define NEWBUILTIN N1

(d) The
onvention is that the
ode for builtin will be in a parameter-

less pro
edure named b NEWBUILTIN. Modify the �le init bran
h.

in the dire
tory sim/builtin by adding these lines:

extern int b NEWBUILTIN();

and

set b inst (NEWBUILTIN, b NEWBUILTIN);

in the appropriate pla
es.

(e) The builtins are
ompiled together into one obje
t �le, builtin.

Update the �le Makefile by appending the name of your obje
t

ode �le at the end of the line \OBJS = : : :" and insert the ap-

propriate
ommands to
ompile your C sour
e �le, e.g.:

OBJS = [: : : other file names : : : ℄ newbuiltin.o

.

.

.

newbuiltin.o: $(HS)

 $(CFLAGS) newbuiltin.

79

(f) Exe
ute the updated make �le to
reate an updated obje
t �le

builtin.

(g) Go to the dire
tory sim and exe
ute make to install the new �le

builtin.

2. Installing Prolog Code:

Assume that the builtin predi
ate to be added is newbuiltin/4. The

pro
edure for installing the Prolog
ode for this is as follows:

(a) Go to the SB-Prolog system dire
tory lib/sr
, where the Prolog

sour
e for the library routines is kept.

(b) Ea
h builtin de�nition is of the form

pred(: : :) :- ' $builtin'(N).

where N is an integer, the builtin number of pred.

(
) Create a Prolog sour
e �le newbuiltin.P (noti
e
orresponden
e

with the name of the predi
ate being de�ned)
ontaining the def-

inition

newbuiltin(A,B,C,D) :-- ' $builtin'(N1).

where N1 is the builtin number of the predi
ate newbuiltin, ob-

tained when installing the C
ode for the builtin (see above).

(d) Compile this Prolog predi
ate, using the simulator and the
om-

pile predi
ate, into a �le newbuiltin (noti
e
orresponden
e with

the name of the predi
ate being de�ned) in the SB-Prolog dire
-

tory lib.

80

